
Translating proofs from
HOL to Coq

Theoretical and practical aspects

Chantal Keller and Benjamin Werner

Ecole Polytechnique & INRIA

jeudi 11 octobre 12

What are mathematics ?
The Bodensee is beautiful

Everyone in Baden loves Dampfnudeln, Markus is in
Baden, thus Markus loves Dampfnudeln.

syntax !

Proof-system :
• detail the proof up to primitive logical rules
• have it checked by the machine

jeudi 11 octobre 12

Proof-system

• A formalism : language, logical rules.

• A software : for manipulating, checking, storing,
building proofs.

• A proof language.

• A library : mathematical corpus.

Similar to a programming language + a compiler :

formalism = abstract syntax

proof language concrete syntax

jeudi 11 octobre 12

Concrete syntax
Both systems use a proof language made of tactics.
They have a common ancestor : LCF

Thus, the proof languages bear some similarities, but are
undoubtedly different (say like Java and C).

 Lemma subst_idt_lift_term : forall j u i,
 subst_idt (lift_term u i j) S = lift_term (subst_idt u S) i j.
 Proof.
 move => j; elim => [n|x X|[C|C|||||||C|C]|c C|t IHt u IHu|A t
IHt] //=
 i.
 - by case: (_ <= _).
 - by rewrite IHt IHu.
 - by rewrite IHt.
 Qed.

jeudi 11 octobre 12

Concrete syntax
Both systems use a proof language made of tactics.
They have a common ancestor : LCF

Thus, the proof languages bear some similarities, but are
undoubtedly different (say like Java and C).

let EQ_MULT_LCANCEL = prove
 (`!m n p. (m * n = m * p) <=> (m = 0) \/ (n = p)`,
 INDUCT_TAC THEN REWRITE_TAC[MULT_CLAUSES; NOT_SUC] THEN
 REPEAT INDUCT_TAC THEN
 ASM_REWRITE_TAC[MULT_CLAUSES; ADD_CLAUSES; GSYM NOT_SUC; NOT_SUC]
THEN
 ASM_REWRITE_TAC[SUC_INJ; GSYM ADD_ASSOC; EQ_ADD_LCANCEL]);;

jeudi 11 octobre 12

Diversity : for the worst or the best ?

• Many proof-systems; all incompatible. The common
language of mathematics seems lost.

• Each proofs-system has its strengths :

Coq : good for computations (four-color theorem,
primality, but also specific design considerations for
algebra...)

HOL : good for classical analysis. Jordan curve
theorem, prime number theorem...

jeudi 11 octobre 12

HOL / HOL-light
Formalism : Church’s Higher-Order logic

Objects : simply typed lambda-calculus (expressions with
binders)

Proofs : Γ⊢ A Γ⊢ B
Γ⊢ A∧B

• No computations in the language (almost)

• The proofs are not stored

How can we trust them ?

jeudi 11 octobre 12

Architecture of the HOL
checker

HOL is implemented in ML; in the implementation :
Γ⊢ A : thm

All the functions allowing objects of type thm are
simple and carefully checked : they correspond to
logical steps.

If we trust these functions, we trust HOL.

jeudi 11 octobre 12

Coq
Formalism : type theory

proofs are objects, proofs are kept - they
can be re-checked

Objects are functional typed programs - with
a very powerful type system.

Γ⊢ p:A Γ⊢ q:B
Γ⊢ (p,q):A∧B

jeudi 11 octobre 12

Coq

Define a function
such that:

0+m ⊳ m

S(n)+m ⊳ S(n+m)

HOL

Prove the existence
of a function such
that:

0+m = m

S(n)+m = S(n+m)

Programs and functions
An example : addition

jeudi 11 octobre 12

Computational proofs

jeudi 11 octobre 12

Translation

• Translating the «concrete» syntax: unrealistic, unreliable,
fragile.

we have to translate the statements in the first place

• Translating the «abstract syntax» : Logical embedding

HOL ⊂ Type Theory

Two kinds of logical embedding : deep and shallow

jeudi 11 octobre 12

objects t ↦ |t|

propositions P↦ |P|

proofs: if Γ⊢ P then |Γ| ⊢ |P|

Shallow embedding

Embedding HOL in type theory
These functions are
defined outside of
the formalisms

jeudi 11 octobre 12

Shallow embedding

jeudi 11 octobre 12

Deep embedding
Represent HOL in a datatype of type theory

«speak about» HOL in type theory

Embedding HOL in type theory

jeudi 11 octobre 12

The trick

Type theory allows lifting deep from shallow
encoding (various work, from Martin-Löf to Garrillot
& Werner, 2007)

Shallow

Deep

jeudi 11 octobre 12

The trick

The encoding is the interface between the
two systems

Shallow

DeepHOL

Coq

jeudi 11 octobre 12

Encoding : types

jeudi 11 octobre 12

Encoding : terms

jeudi 11 octobre 12

term type

Lifting to Coq

jeudi 11 octobre 12

Modelling the proofs

A function
check: term ! proof ! bool
such that if (check t p)=true then :

• t is a well-formed proposition / boolean
• p is a proof of t

jeudi 11 octobre 12

A function
check: term ! proof ! bool
such that if (check t p)=true then :

• t is a well-formed proposition / boolean
• p is a proof of |t|
• this entails that |t|is true - in Coq

Nice point :
|t| is a “real’’ Coq theorem : it is intelligible

jeudi 11 octobre 12

Status of definitions in the two
systems

Definition four := 4.

In HOL :
new object : four : N
new lemma : four = 4

In Coq :
new object : four : nat
new rule : four ⊳ 4

jeudi 11 octobre 12

Recording HOL-light proofs
The type proof is a pure data-type; we can :

• define its twin in ML, in the HOL-light
implementation

• instrument the basic tactics so that they
construct the proof-tree on the fly (reuse code
of S. Obua and now from the OpenTheory
projet)

• export these proof-trees to Coq by
straightforward pretty-printing

The bottleneck becomes the size of these proof-trees
(as expected)
We introduce new lemmas for sharing.

jeudi 11 octobre 12

The bottleneck becomes the size of these proof-trees
(as expected)
We introduce new lemmas for sharing.

jeudi 11 octobre 12

Substantial gains expected in a reasonable close
future

jeudi 11 octobre 12

What about classical logic ?

HOL is inherently classical :

• excluded middle

• Hilbert’s ε choice operator

We have no choice : we need to add classical
axioms to Coq

jeudi 11 octobre 12

Conclusion
• Translation and cooperation between proof-systems

can work, sometimes.

• Allows re-using but also re-checking of HOL proofs
in Coq

• Relies on work specific to the two involved
formalisms.

• Nice point : the translated theorems are intelligible
and reusable.

• Efficiency and memory consumptation remains an
issue; currently some further progress by using Coq
arrays and switching to OpenTheory

• Mathematical proofs as massive date; a flavour of
the future ?

jeudi 11 octobre 12

