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What are mathematics ?
The Bodensee is beautiful

Everyone in Baden loves Dampfnudeln, Markus is in 
Baden, thus Markus loves Dampfnudeln.

syntax !

Proof-system :
• detail the proof up to primitive logical rules
• have it checked by the machine
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Proof-system

• A formalism : language, logical rules.

• A software : for manipulating, checking, storing, 
building proofs.

• A proof language.

• A library : mathematical corpus.

Similar to a programming language + a compiler :

formalism = abstract syntax

proof language concrete syntax
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Concrete syntax
Both systems use a proof language made of tactics.
They have a common ancestor : LCF

Thus, the proof languages bear some similarities, but are 
undoubtedly different  (say like Java and C).

 Lemma subst_idt_lift_term : forall j u i,
    subst_idt (lift_term u i j) S = lift_term (subst_idt u S) i j.
  Proof.
    move => j; elim => [n|x X|[C|C|||||||C|C]|c C|t IHt u IHu|A t 
IHt] //=
      i.
    - by case: (_ <= _).
    - by rewrite IHt IHu.
    - by rewrite IHt.
  Qed.
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Concrete syntax
Both systems use a proof language made of tactics.
They have a common ancestor : LCF

Thus, the proof languages bear some similarities, but are 
undoubtedly different  (say like Java and C).

let EQ_MULT_LCANCEL = prove
 (`!m n p. (m * n = m * p) <=> (m = 0) \/ (n = p)`,
  INDUCT_TAC THEN REWRITE_TAC[MULT_CLAUSES; NOT_SUC] THEN
  REPEAT INDUCT_TAC THEN
  ASM_REWRITE_TAC[MULT_CLAUSES; ADD_CLAUSES; GSYM NOT_SUC; NOT_SUC] 
THEN
  ASM_REWRITE_TAC[SUC_INJ; GSYM ADD_ASSOC; EQ_ADD_LCANCEL]);;
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Diversity : for the worst or the best ?

• Many proof-systems; all incompatible. The common 
language of mathematics seems lost.

• Each proofs-system has its strengths :

Coq : good for computations (four-color theorem, 
primality, but also specific design considerations for 
algebra...)

HOL : good for classical analysis. Jordan curve 
theorem, prime number theorem...
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HOL / HOL-light
Formalism : Church’s Higher-Order logic

Objects : simply typed lambda-calculus (expressions with 
binders)

Proofs : Γ⊢ A   Γ⊢ B
Γ⊢ A∧B

• No computations in the language (almost)

• The proofs are not stored

How can we trust them ?
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Architecture of the HOL 
checker

HOL is implemented in ML; in the implementation :
Γ⊢ A  :  thm

All the functions allowing objects of type thm are 
simple and carefully checked : they correspond to 
logical steps.

If we trust these functions, we trust HOL.
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Coq
Formalism :  type theory

proofs are objects, proofs are kept - they 
can be re-checked

Objects are functional typed programs - with 
a very powerful type system.

Γ⊢ p:A   Γ⊢ q:B
Γ⊢ (p,q):A∧B
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Coq

Define a function 
such that:

0+m      ⊳  m

S(n)+m  ⊳  S(n+m)

HOL

Prove the existence 
of a function such 
that:

0+m      =  m

S(n)+m  =  S(n+m)

Programs and functions
An example : addition
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Computational proofs
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Translation

• Translating the «concrete» syntax: unrealistic, unreliable, 
fragile.

we have to translate the statements in the first place

• Translating the «abstract syntax» : Logical embedding

HOL ⊂ Type Theory

Two kinds of logical embedding :   deep and shallow
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objects                        t ↦ |t|

propositions                P↦ |P|

proofs:  if     Γ⊢ P   then       |Γ| ⊢ |P|

Shallow embedding

Embedding HOL in type theory
These functions are 
defined outside of 
the formalisms
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Shallow embedding
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Deep embedding
Represent HOL in a datatype of type theory

«speak about» HOL in type theory

Embedding HOL in type theory
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The trick

Type theory allows lifting deep from shallow 
encoding (various work, from Martin-Löf to Garrillot 
& Werner, 2007)

Shallow

Deep
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The trick

The encoding is the interface between the 
two systems

Shallow

DeepHOL

Coq
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Encoding : types
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Encoding : terms
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term type

Lifting to Coq
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Modelling the proofs

A function 
check: term ! proof ! bool 
such that  if  (check t p)=true  then :

• t is a well-formed proposition / boolean
• p is a proof of t
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A function 
check: term ! proof ! bool 
such that  if  (check t p)=true  then :

• t is a well-formed proposition / boolean
• p is a proof of |t|
• this entails that |t|is true - in Coq

Nice point :
|t| is a “real’’ Coq theorem : it is intelligible
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Status of definitions in the two 
systems

Definition four := 4.

In HOL :
new object :      four : N
new lemma :     four = 4 

In Coq :
new object :      four : nat
new rule :          four    ⊳    4
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Recording HOL-light proofs
The type proof is a pure data-type; we can :

• define its twin in ML, in the HOL-light 
implementation

• instrument the basic tactics so that they 
construct the proof-tree on the fly (reuse code 
of S. Obua and now from the OpenTheory 
projet)

• export these proof-trees to Coq by 
straightforward pretty-printing

The bottleneck becomes the size of these proof-trees
(as expected)
We introduce new lemmas for sharing.
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The bottleneck becomes the size of these proof-trees
(as expected)
We introduce new lemmas for sharing.
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Substantial gains expected in a reasonable close 
future
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What about classical logic ?

HOL is inherently classical :

• excluded middle

• Hilbert’s ε choice operator

We have no choice : we need to add classical 
axioms to Coq
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Conclusion
• Translation and cooperation between proof-systems 

can work, sometimes.

• Allows re-using but also re-checking of HOL proofs 
in Coq

• Relies on work specific to the two involved 
formalisms.

• Nice point : the translated theorems are intelligible 
and reusable.

• Efficiency and memory consumptation remains an 
issue; currently some further progress by using Coq 
arrays and switching to OpenTheory

• Mathematical proofs as massive date; a flavour of 
the future ?
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