Translating proofs from HOL to Coq

Theoretical and practical aspects

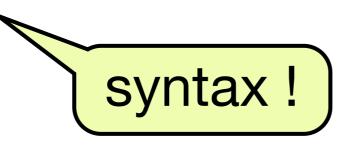
Chantal Keller and Benjamin Werner

Ecole Polytechnique & INRIA

What are mathematics ?

The Bodensee is beautiful

Everyone in Baden loves Dampfnudeln, Markus is in Baden, *thus* Markus loves Dampfnudeln.



Proof-system :

- detail the proof up to primitive logical rules
- have it checked by the machine

Proof-system

- A formalism : language, logical rules.
- A software : for manipulating, checking, storing, building proofs.
- A proof language.
- A library : mathematical corpus.

Similar to a programming language + a compiler : formalism = abstract syntax proof language concrete syntax

Concrete syntax

Both systems use a proof language made of *tactics*. They have a common ancestor : LCF

Thus, the proof languages bear some similarities, but are undoubtedly different (say like Java and C).

```
Lemma subst_idt_lift_term : forall j u i,
    subst_idt (lift_term u i j) S = lift_term (subst_idt u S) i j.
    Proof.
    move => j; elim => [n|x X|[C|C||||||C|C]|c C|t IHt u IHu|A t
IHt] //=
        i.
        - by case: (_ <= _).
        - by rewrite IHt IHu.
        - by rewrite IHt IHu.
        Qed.
```

Concrete syntax

Both systems use a proof language made of *tactics*. They have a common ancestor : LCF

Thus, the proof languages bear some similarities, but are undoubtedly different (say like Java and C).

```
let EQ_MULT_LCANCEL = prove
(`!m n p. (m * n = m * p) <=> (m = 0) \/ (n = p)`,
INDUCT_TAC THEN REWRITE_TAC[MULT_CLAUSES; NOT_SUC] THEN
REPEAT INDUCT_TAC THEN
ASM_REWRITE_TAC[MULT_CLAUSES; ADD_CLAUSES; GSYM NOT_SUC; NOT_SUC]
THEN
ASM REWRITE TAC[SUC INJ; GSYM ADD ASSOC; EQ ADD LCANCEL]);;
```

Diversity : for the worst or the best ?

- Many proof-systems; all incompatible. The common language of mathematics seems lost.
- Each proofs-system has its strengths :

Coq : good for computations (four-color theorem, primality, but also specific design considerations for algebra...)

HOL : good for classical analysis. Jordan curve theorem, prime number theorem...

HOL / HOL-light

Formalism : Church's Higher-Order logic

Objects : simply typed lambda-calculus (expressions with binders)

Proofs:
$$\frac{\Gamma \vdash A \quad \Gamma \vdash B}{\Gamma \vdash A \land B}$$

- No computations in the language (almost)
- The proofs are not stored

How can we trust them ?

Architecture of the HOL checker

HOL is implemented in ML; in the implementation : $\Gamma \vdash A$: thm

All the functions allowing objects of type thm are simple and carefully checked : they correspond to logical steps.

If we trust these functions, we trust HOL.

Coq

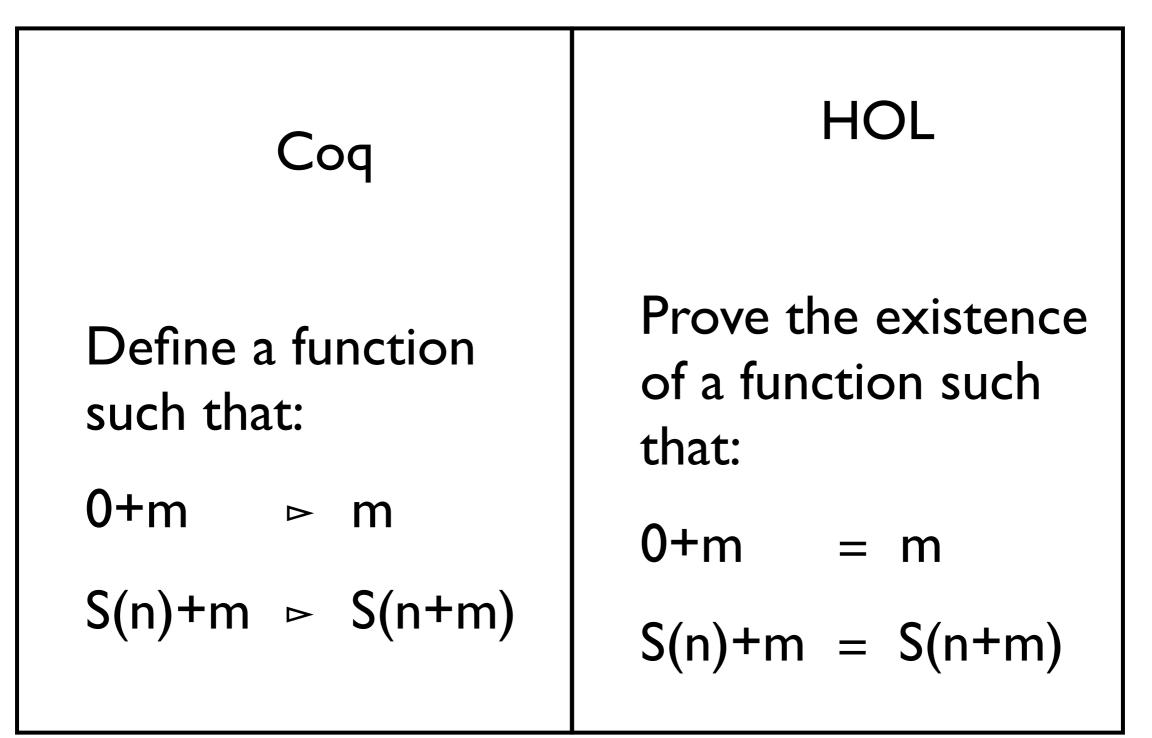
Formalism : type theory

proofs are objects, proofs are kept - they can be re-checked

Objects are functional typed programs - with a very powerful type system.

Programs and functions

An example : addition



Computational proofs

Predicate P : nat -> Prop

- Prove P n in a standard way (tactics...)
- Prove P n using computation
- Certificate:
 - certif: nat -> Type
- Checker:

f: forall n, certif n -> bool
such that

forall c n, f n (c n) = true -> P n

Certificate: HOL Light proof term...

Translation

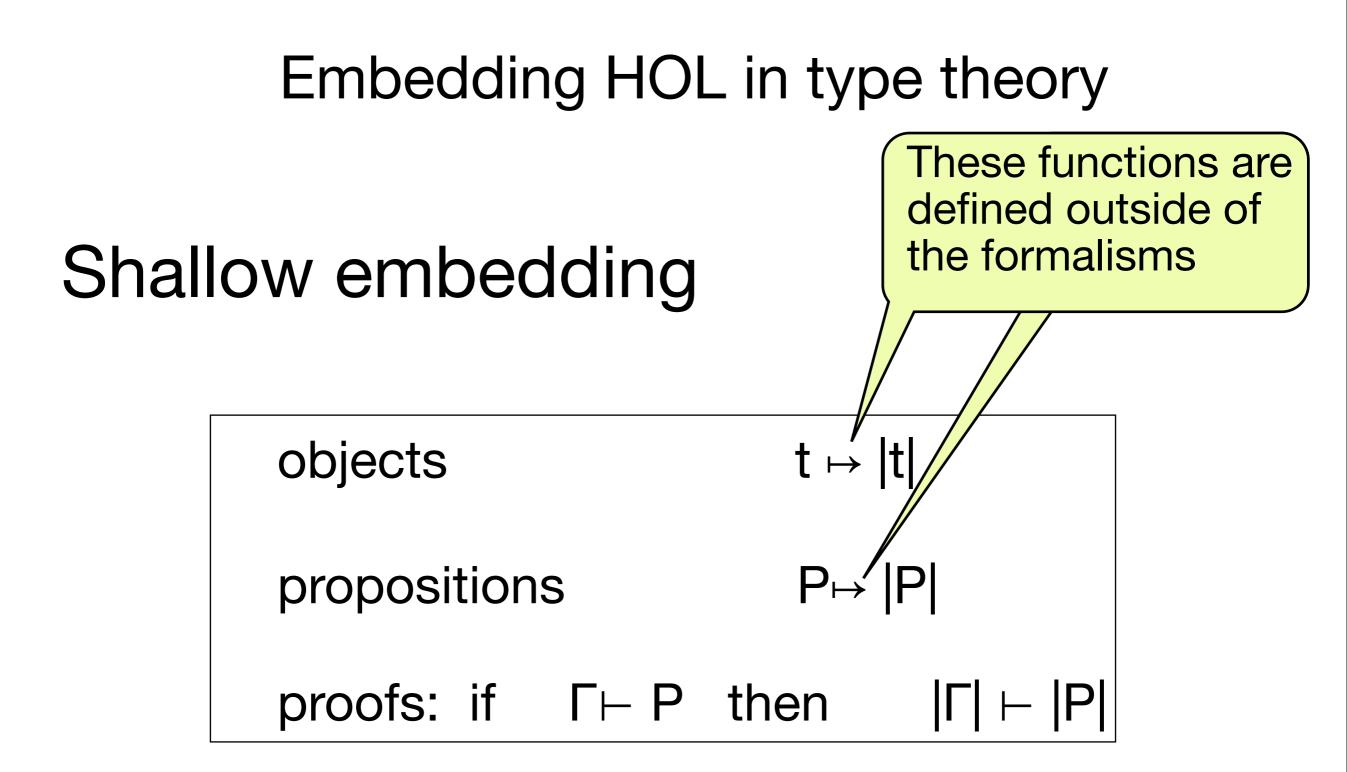
 Translating the «concrete» syntax: unrealistic, unreliable, fragile.

we have to translate the statements in the first place

Translating the «abstract syntax» : Logical embedding

 $HOL \subset Type Theory$

Two kinds of logical embedding : deep and shallow



Shallow embedding

```
• Example of the simply typed \lambda-calculus in Coq:
Definition type := Type.
  • Representation of \lambda x : bool.x:
fun x: bool => x
```

Embedding HOL in type theory

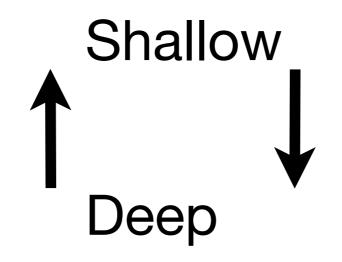
Deep embedding

Represent HOL in a datatype of type theory

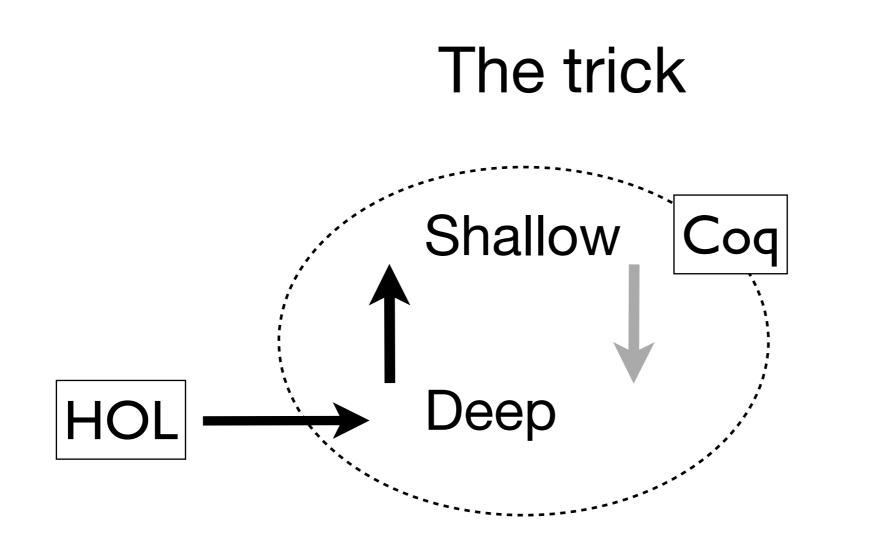
«speak about» HOL in type theory

• Example of the simply typed λ -calculus in Coq: Inductive type : Type := B : type A : type -> type -> type. Inductive term : Type := | Var: string -> term Lam: string -> type -> term -> term App: term -> term -> term. Representation of λx : bool.x: Lam "x" B (Var "x")

The trick



Type theory allows lifting deep from shallow encoding (various work, from Martin-Löf to Garrillot & Werner, 2007)



The encoding is the interface between the two systems

Encoding : types

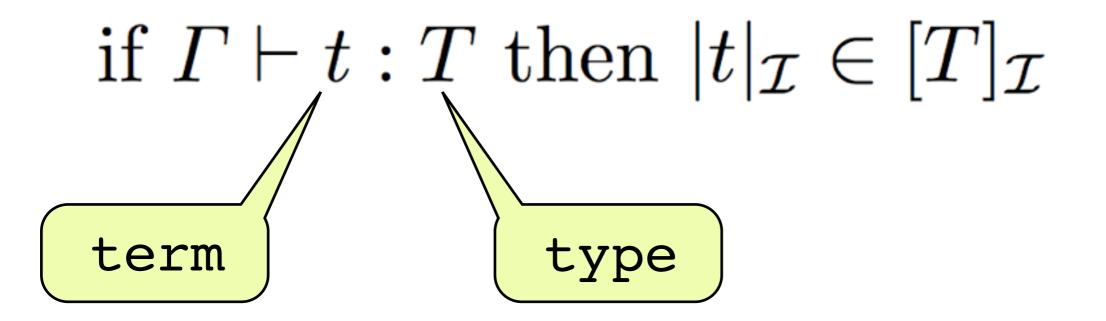
Inductive type : Type :=
| TVar : idT → type | Bool : type
| Arrow : type → type → type
| TDef : defT → list_type → type
with list_type : Type :=
| Tnil : list_type
| Tcons : type → list_type → list_type.

Encoding : terms

Inductive term : Type :=

- | Dbr : nat ightarrow term | Var : idV ightarrow type ightarrow term
- | Cst : cst \rightarrow term | Def : defV \rightarrow type \rightarrow term
- | App : term \rightarrow term \rightarrow term
- | Abs : type \rightarrow term \rightarrow term.

Lifting to Coq



Record type_translation : Type :=
 mkTT {ttrans :> Type; tinhab : ttrans}.

<code>tr_type: forall \mathcal{I} , type ightarrow type_translation</code>

Modelling the proofs

Inductive proof : Type := Prefl : term \rightarrow proof Pconj : proof \rightarrow proof \rightarrow proof Pconjunct1 : proof \rightarrow proof Pconjunct2 : proof \rightarrow proof . . . A function check: term \rightarrow proof \rightarrow bool such that if (check t p)=true then: t is a well-formed proposition / boolean

• p is a proof of t

A function

check: term \rightarrow proof \rightarrow bool

such that if (check t p)=true then:

- t is a well-formed proposition / boolean
- p is a proof of |t|
- this entails that |t| is true in Coq

Nice point : |t | is a "real" Coq theorem : it is intelligible

Theorem hollight_MOD_EQ_0_thm : forall x x0 : N, x0 <> 0
$$\rightarrow$$
 x0 | x = (exists a : N, x = a * x0).

Notation "a|b" := (Nmod b a = 0).

Status of definitions in the two systems

Definition four := 4.

In HOL :

new object : four : N

new lemma : four = 4

In Coq:

new object : four : nat

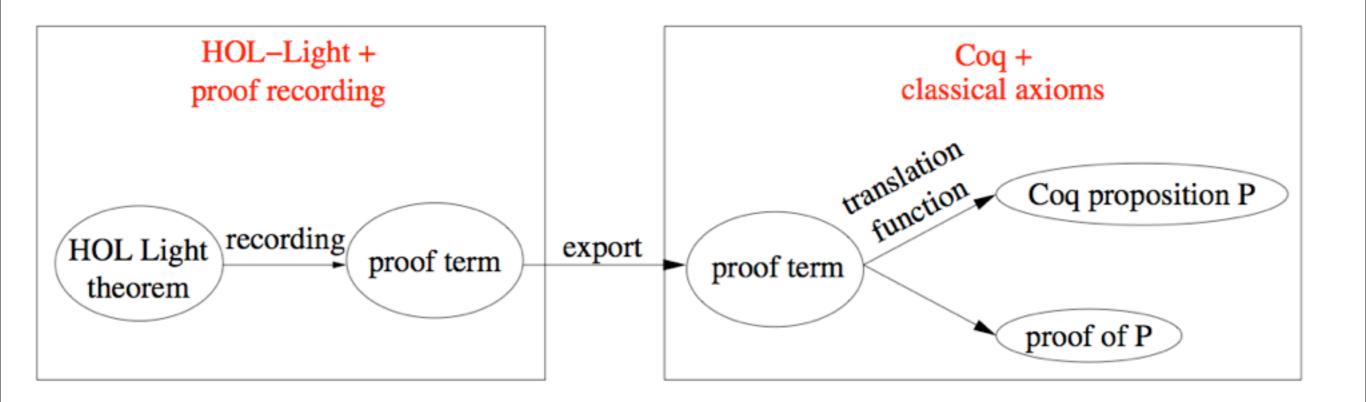
new rule : four \triangleright 4

Recording HOL-light proofs

The type proof is a pure data-type; we can :

- define its twin in ML, in the HOL-light implementation
- instrument the basic tactics so that they construct the proof-tree on the fly (reuse code of S. Obua and now from the OpenTheory projet)
- export these proof-trees to Coq by straightforward pretty-printing

The bottleneck becomes the size of these proof-trees (as expected) We introduce new lemmas for sharing.



CONJ_SYM :
$$\forall t_1 t_2$$
. $t_1 \land t_2 \Leftrightarrow t_2 \land t_1$
forall $\times \times 0$: Prop, $(\times \land \times 0) = (\times 0 \land \times)$

The bottleneck becomes the size of these proof-trees (as expected) We introduce new lemmas for sharing.

jeudi 11 octobre 12

Bench.	Number		Time		
	Theorems	Lemmas	Rec.	Exp.	Comp.
Stdlib	1,726	195,317	2 min 30	6 min 30	10h
Model	2,121	322,428	6 min 30	29 min	44h
Vectors	2,606	338,087	6 min 30	21 min	39h

Bench.	Memory				
Dench.	H.D.D.	Virt. OCaml	Virt. Coq		
Stdlib	218 Mb	1.8 Gb	4.5 Gb		
Model	372 Mb	5.0 Gb	7.6 Gb		
Vectors	329 Mb	3.0 Gb	7.5 Gb		

Substantial gains expected in a reasonable close future

What about classical logic ?

HOL is inherently classical :

- excluded middle
- Hilbert's **E** choice operator

We have no choice : we need to add classical axioms to Coq

Conclusion

- Translation and cooperation between proof-systems can work, sometimes.
- Allows re-using but also re-checking of HOL proofs in Coq
- Relies on work specific to the two involved formalisms.
- Nice point : the translated theorems are intelligible and reusable.
- Efficiency and memory consumptation remains an issue; currently some further progress by using Coq arrays and switching to OpenTheory
- Mathematical proofs as massive date; a flavour of the future ?