Translating proofs from
HOL to Coq

Theoretical and practical aspects

Chantal Keller and Benjamin Werner

Ecole Polytechnique & INRIA

What are mathematics ?

Everyone in Baden loves Dampfnudeln, Markus is in
Baden, thus Markus loves Dampfnudeln.

\(syntax !)

Proof-system :

» detail the proof up to primitive logical rules
* have it checked by the machine

jeudi 11 octobre 12

Proof-system

® A formalism : language, logical rules.

® A software : for manipulating, checking, storing,
building proofs.

® A proof language.

® A library : mathematical corpus.

Similar to a programming language + a compiler :
formalism = abstract syntax

proof language concrete syntax

jeudi 11 octobre 12

Concrete syntax

Both systems use a proof language made of tactics.
They have a common ancestor : LCF

Thus, the proof languages bear some similarities, but are
undoubtedly different (say like Java and C).

Lemma subst idt 1ift term : forall j u 1,
subst idt (lift term u i j) S = 1lift term (subst idt u S) 1 j.
Proof.

move => j; elim => [n|x X|[C|C|]|]|]||]|C|C]l|e C|t IHt u IHu|A t
IHt] //=
1.
- by case: (<=).

- by rewrite IHt THuU.
- by rewrite IHt.

jeudi 11 octobre 12

Concrete syntax

Both systems use a proof language made of tactics.
They have a common ancestor : LCF

Thus, the proof languages bear some similarities, but are
undoubtedly different (say like Java and C).

let EQ MULT LCANCEL = prove
("Imnp. (mM*n=m?*p)<=>(m=20) \/ (n=p),
INDUCT TAC THEN REWRITE TAC[MULT CLAUSES; NOT SUC] THEN
REPEAT INDUCT TAC THEN
ASM REWRITE TAC[MULT CLAUSES; ADD CLAUSES; GSYM NOT SUC; NOT SUC]
THEN
ASM REWRITE TAC[SUC INJ; GSYM ADD ASSOC; EQ ADD LCANCEL]);:;

jeudi 11 octobre 12

Diversity : for the worst or the best ?

® Many proof-systems; all incompatible. The common
language of mathematics seems lost.

® Each proofs-system has its strengths :

Coq : good for computations (four-color theorem,
primality, but also specific design considerations for

algebra...)

HOL : good for classical analysis. Jordan curve
theorem, prime number theorem...

jeudi 11 octobre 12

HOL / HOL-light

Formalism : Church’s Higher-Order logic

Objects : simply typed lambda-calculus (expressions with
binders)

[A B
[~ AAB

Proofs :

No computations in the language (almost)

The proofs are not stored

How can we trust them ?j

jeudi 11 octobre 12

Architecture of the HOL
checker

HOL is implemented in ML; in the implementation :
— A : thm

All the functions allowing objects of type thm are

simple and carefully checked : they correspond to
logical steps.

If we trust these functions, we trust HOL.

Coag

Formalism : type theory

[p:A THaB
[~ (p,q):AAB

proofs are objects, proofs are kept - they
can be re-checked

Objects are functional typed programs - with
a very powerful type system.

Programs and functions

An example : addition

Cog

Define a function
such that:

O+m > m

S(n)+m = S(n+m)

HOL

Prove the existence
of a function such
that:

O+m

]
=

S(nN)¥m = S(n+m)

Computational proofs

Predicate P : nat -> Prop

Prove P n in a standard way (tactics...)

Prove P n using computation

o (Certificate:
certif: mnat -> Type

e Checker:
f: forall n, certif n -> bool

such that
forall ¢ n, £f n (¢c n) = true -> P n

Certificate: HOL Light proof term. ..

jeudi 11 octobre 12

Translation

® Translating the «concrete» syntax: unrealistic, unreliable,
fragile.

we have to translate the statements in the first place

® Iranslating the «abstract syntax» : Logical embedding

HOL C Type Theory

Two kinds of logical embedding : deep and shallow

jeudi 11 octobre 12

Embedding HOL in type theory

Shallow embedding

‘These functions are
defined outside of
the formalisms

/7

objects to 1]
propositions P’ [P
proofs: if [+~ P then I+ |P]

Shallow embedding

e Example of the simply typed A-calculus in Coq:
Definition type := Type.

e Representation of Ax : bool.x:
fun x: Dbool => x

jeudi 11 octobre 12

Embedding HOL in type theory

Deep embedding
Represent HOL in a datatype of type theory

«speak about» HOL in type theory

e Example of the simply typed A-calculus in Coq:
Inductive type : Type :=

| B : type
| A : type -> type -> type.
Inductive term : Type :=

| Var: string -> term
| Lam: string -> type -> term -> term
| App: term -> term -> term.
e Representation of Ax : bool.x:
Lam “x’> B (Var “x’’)

jeudi 11 octobre 12

The trick

Shallow

P

Deep

Type theory allows lifting deep from shallow

encoding (various work, from Martin-Léf to Garrillot
& Werner, 2007)

jeudi 11 octobre 12

The trick

—‘_------.-...
-
- -
- ~
- S
- ~

Shallow ~Covq

HOL __) Deep

-
~o P
~ -
'''''
-y - -

The encoding is the interface between the
two systems

jeudi 11 octobre 12

Encoding : types

Inductive type : Type :=

| TVar : idT — type | Bool : type

| Arrow : type — type — type

| TDef : defT — list_type — type

with list_type : Type :=

| Tnil : list_type

| Tcons : type — list_type — list_type.

jeudi 11 octobre 12

Encoding : terms

Inductive term : Type :=
Dbr : nat — term | Var : idV — type — term
Cst : cst — term | Def : defV — type — term

App : term — term — term
Abs : type — term — term.

jeudi 11 octobre 12

Lifting to Coqg

it I'H1:7T then |t‘1 - [T]I

[term type j

Record type_translation
mkTT {ttrans :> Type;

Type
tinhab

ttrans }.

tr_type: forall Z, type — type_translation

sem_term : context — term —
option {ty: type & forall Z,

tr_type Z ty}

jeudi 11 octobre 12

Modelling the proofs

Inductive proof : Type :=

| Prefl : term — proof

| Pconj : proof — proof — proof
| Pconjunctl : proof — proof

| Pconjunct2 : proof — proof

|

A function
check: term -» proof - bool

such that if (check t p)=true then:
* t is a well-formed proposition / boolean
* pisaproofof t

A function
check: term -» proof -» bool

such that if (check t p)=true then:
* t is a well-formed proposition / boolean
* p is a proof of |t |
* this entails that |t | is true - in Cog

Nice point :
|t | is a“rea

I”

Coq theorem :it is intelligible

Theorem hollight_MOD_EQ_O_thm
forall x xO0 : N, x0 <> 0 —

x0 | x = (exists a : N, x = a *x x0).

Notation "al|b" := (Nmod b a 0).

jeudi 11 octobre 12

Status of definitions in the two

systems
Definition four := 4.
In HOL :
new object: four: N

new lemma: four=4
In Coq :
new object: four : nat

new rule : four = 4

Recording HOL-light proofs

The type proof is a pure data-type; we can :

® define its twin in ML, in the HOL-light
implementation

® nstrument the basic tactics so that they
construct the proof-tree on the fly (reuse code
of S. Obua and now from the OpenTheory
projet)

® export these proof-trees to Coqg by
straightforward pretty-printing

The bottleneck becomes the size of these proof-trees
(as expected)
We introduce new lemmas for sharing.

jeudi 11 octobre 12

HOL-Light + Coq +
proof recording classical axioms

o® B
A -
— > @“/ Coq proposmon P__* b

. B
recordmg \
HOL nght ~(proof term ,:ﬁf“f-'{.

_theorem /

proof terrn export

S proof of P >

CONJ SYM : Vb tiANbhbES bhAL
forall x x0 : Prop, (x Ax0) = (x0 Ax)

The bottleneck becomes the size of these proof-trees
(as expected)
We introduce new lemmas for sharing.

jeudi 11 octobre 12

Number Time

Bench.
ene Theorems | Lemmas Rec. Exp. Comp.

Stdlib 1,726 195317 | 2 min 30 | 6 min 30 10h

Model 2121 322428 | 6 min 30 | 29 min 44h

Vectors 2,606 338,087 | 6 min 30 | 21 min 39h

Bench. Memory
H.D.D. | Virt. OCaml | Virt. Coqg
Stdlib || 218 Mb 1.8 Gb 4.5 Gb
Model || 372 Mb 5.0 Gb 7.6 Gb
Vectors || 329 Mb 3.0 Gb 7.5 Gb

Substantial gains expected in a reasonable close
future

jeudi 11 octobre 12

What about classical logic ?

HOL is inherently classical :

® excluded middle

® Hilbert’s € choice operator

We have no choice : we need to add classical
axioms to Cog

jeudi 11 octobre 12

Conclusion

Translation and cooperation between proof-systems
can work, sometimes.

Allows re-using but also re-checking of HOL proofs
in Cog

Relies on work specific to the two involved
formalisms.

Nice point : the translated theorems are intelligible
and reusable.

Efficiency and memory consumptation remains an
issue; currently some further progress by using Coq
arrays and switching to OpenTheory

Mathematical proofs as massive date; a flavour of
the future ?

jeudi 11 octobre 12

