Method of Orienting Lines for Minimizing a Sum of Euclidean Norms

Phan Thanh An^{1,2}, Dinh Thanh Giang², and Le Hong Trang^{2,3}

¹Institute of Mathematics, Hanoi, Vietnam ²CEMAT, Instituto Superior Técnico, Lisbon, Portugal ³OPTEC, K.U.Leuven, Belgium

Phan Thanh An^{1,2}, Dinh Thanh Giang², and Le Hong Trang², Method of Orienting Lines for Minimizing a Sum of Euclidean

Table of Contents

Method of Orienting Curves for Optimal Control Problems
 Method of Orienting Curves

3 Method of Orienting Lines for Minimizing a Sum of Euclidean Norms

- Method of Orienting Lines
- Exact Algorithm
- Restricted Areas and Application Example

4 Conclusion

▲■ → ▲ 国 → ▲ 国 →

Method of Orienting Curves for Optimal Control Problems Method of Orienting Lines for Minimizing a Sum of Euclidean No Conclusion

Minimizing a Sum of Euclidean Norms

$$\min_{t} \left(\mathcal{F}(t_1,\ldots,t_k) = \sum_{i=1}^{k-1} \| p_i(t_i) - p_{i+1}(t_{i+1}) \| \right), \quad (1)$$

where $t_i \ge a_i > 0$, $p_i : \mathbb{R}^1 \to \mathbb{R}^2$, (i = 1, ..., k) are linear, $k \ge 3$ and $\|\cdot\|$ is an Euclidean norm in $\mathbb{R}^2 \Longrightarrow$

Method of Orienting Curves for Optimal Control Problems Method of Orienting Lines for Minimizing a Sum of Euclidean No Conclusion

Minimizing a Sum of Euclidean Norms

$$\min_{t} \left(\mathcal{F}(t_1,\ldots,t_k) = \sum_{i=1}^{k-1} \| p_i(t_i) - p_{i+1}(t_{i+1}) \| \right), \quad (1)$$

where $t_i \ge a_i > 0$, $p_i : \mathbb{R}^1 \to \mathbb{R}^2$, (i = 1, ..., k) are linear, $k \ge 3$ and $\|\cdot\|$ is an Euclidean norm in $\mathbb{R}^2 \Longrightarrow A$ special case of $\min_{x \in S \subset \mathbb{R}^n} (\mathcal{F}(x) = \sum_{i=1}^m \|A_i^T x - b_i\|)$ (1*)

Method of Orienting Curves for Optimal Control Problems Method of Orienting Lines for Minimizing a Sum of Euclidean No Conclusion

Minimizing a Sum of Euclidean Norms

$$\min_{t} \left(\mathcal{F}(t_1,\ldots,t_k) = \sum_{i=1}^{k-1} \| p_i(t_i) - p_{i+1}(t_{i+1}) \| \right), \quad (1)$$

where $t_i \ge a_i > 0$, $p_i : \mathbb{R}^1 \to \mathbb{R}^2$, (i = 1, ..., k) are linear, $k \ge 3$ and $\|\cdot\|$ is an Euclidean norm in $\mathbb{R}^2 \Longrightarrow A$ special case of $\min_{x \in S \subset \mathbb{R}^n} (\mathcal{F}(x) = \sum_{i=1}^m \|A_i^T x - b_i\|)$ (1*)

• $(1)/(1^*)$ is rewritten as a second-order cone program then solved approximately by interior-point methods. (Xue and Ye (1997), Lobo, Vandenberghe, Boyd, and Lebret (1998), etc),

Method of Orienting Curves for Optimal Control Problems Method of Orienting Lines for Minimizing a Sum of Euclidean No Conclusion

Minimizing a Sum of Euclidean Norms

$$\min_{t} \left(\mathcal{F}(t_1,\ldots,t_k) = \sum_{i=1}^{k-1} \| p_i(t_i) - p_{i+1}(t_{i+1}) \| \right), \quad (1)$$

where $t_i \ge a_i > 0$, $p_i : \mathbb{R}^1 \to \mathbb{R}^2$, (i = 1, ..., k) are linear, $k \ge 3$ and $\|\cdot\|$ is an Euclidean norm in $\mathbb{R}^2 \Longrightarrow A$ special case of $\min_{x \in S \subset \mathbb{R}^n} (\mathcal{F}(x) = \sum_{i=1}^m \|A_i^T x - b_i\|)$ (1*)

• $(1)/(1^*)$ is rewritten as a second-order cone program then solved approximately by interior-point methods. (Xue and Ye (1997), Lobo, Vandenberghe, Boyd, and Lebret (1998), etc), \rightarrow solutions of (1) are approximate!

Method of Orienting Curves for Optimal Control Problems Method of Orienting Lines for Minimizing a Sum of Euclidean No Conclusion

Minimizing a Sum of Euclidean Norms

$$\min_{t} \left(\mathcal{F}(t_1,\ldots,t_k) = \sum_{i=1}^{k-1} \| p_i(t_i) - p_{i+1}(t_{i+1}) \| \right), \quad (1)$$

where $t_i \ge a_i > 0$, $p_i : \mathbb{R}^1 \to \mathbb{R}^2$, (i = 1, ..., k) are linear, $k \ge 3$ and $\|\cdot\|$ is an Euclidean norm in $\mathbb{R}^2 \Longrightarrow A$ special case of $\min_{x \in S \subset \mathbb{R}^n} (\mathcal{F}(x) = \sum_{i=1}^m \|A_i^T x - b_i\|)$ (1*)

• (1)/(1^{*}) is rewritten as a second-order cone program then solved approximately by interior-point methods. (Xue and Ye (1997), Lobo, Vandenberghe, Boyd, and Lebret (1998), etc), \rightarrow solutions of (1) are approximate!

• How can we find exact solutions of Problem $(1)/(1^*)$?

- 4 回 5 4 日 5 4 日 5 - 日

Method of Orienting Curves for Optimal Control Problems Method of Orienting Lines for Minimizing a Sum of Euclidean No Conclusion

> р a

Geometrical Form of Problem (1)

$$\min_{t} \left(\mathcal{F}(t_{1}, \dots, t_{k}) = \sum_{i=1}^{k-1} \| p_{i}(t_{i}) - p_{i+1}(t_{i+1}) \| \right), \quad (1)$$

$$t_{i} \geq a_{i} > 0$$

$$p_{i} : \mathbb{R}^{1} \to \mathbb{R}^{2}, \ (i = 1, \dots, k)$$
are linear.

Phan Thanh An^{1,2}, Dinh Thanh Giang², and Le Hong Trang^{2,7} Method of Orienting Lines for Minimizing a Sum of Euclidean

・ロン ・回 と ・ ヨ と ・ ヨ と

Method of Orienting Curves for Optimal Control Problems Method of Orienting Lines for Minimizing a Sum of Euclidean No Conclusion

> t p

Geometrical Form of Problem (1)

$$\min_{t} \left(\mathcal{F}(t_{1}, \dots, t_{k}) = \sum_{i=1}^{k-1} \| p_{i}(t_{i}) - p_{i+1}(t_{i+1}) \| \right), \quad (1)$$

$$t_{i} \geq a_{i} > 0$$

$$p_{i} : \mathbb{R}^{1} \to \mathbb{R}^{2}, \ (i = 1, \dots, k)$$
are linear.

Phan Thanh An^{1,2}, Dinh Thanh Giang², and Le Hong Trang^{2,7} Method of Orienting Lines for Minimizing a Sum of Euclidean

・ロン ・回 と ・ ヨ と ・ ヨ と

Method of Orienting Curves for Optimal Control Problems Method of Orienting Lines for Minimizing a Sum of Euclidean No Conclusion

a

Geometrical Form of Problem (1)

$$\min_{t} \left(\mathcal{F}(t_{1}, \dots, t_{k}) = \sum_{i=1}^{k-1} \|p_{i}(t_{i}) - p_{i+1}(t_{i+1})\| \right), \quad (1)$$

$$t_{i} \geq a_{i} > 0$$

$$p_{i} : \mathbb{R}^{1} \to \mathbb{R}^{2}, \ (i = 1, \dots, k)$$
are linear.

Phan Thanh An^{1,2}, Dinh Thanh Giang², and Le Hong Trang^{2,3} Method of Orienting Lines for Minimizing a Sum of Euclidean

・ロン ・回 と ・ ヨ と ・ ヨ と

Method of Orienting Curves

Optimal Control Problem

Some optimal control problems can be stated in the form

(P)
$$\min_{x,u} \int_{t_0}^{t_f} F(t,x(t),u(t))dt$$

subject to

$$\dot{x}(t) = f(t, x(t), u(t)), \ t \in [t_0, t_f]$$

 $lpha_1(t) \ge x(t) \ge lpha_2(t), x(t_0) = x_0, x(t_f) = x_f$
 $g(t, u(t)) \ge 0, \ t \in [t_0, t_f].$

・ロト ・回ト ・ヨト ・ヨト

Method of Orienting Curves

Optimal Control Problem

Some optimal control problems can be stated in the form

(P)
$$\min_{x,u} \int_{t_0}^{t_f} F(t,x(t),u(t))dt$$

subject to

$$\begin{split} \dot{x}(t) &= f(t, x(t), u(t)), \ t \in [t_0, t_f] \\ \alpha_1(t) &\geq x(t) \geq \alpha_2(t), x(t_0) = x_0, x(t_f) = x_f \\ g(t, u(t)) &\geq 0, \ t \in [t_0, t_f]. \end{split}$$

Geometrical form of (P):

Phan Thanh An^{1,2}, Dinh Thanh Giang², and Le Hong Trang², Method of Orienting L

Method of Orienting Lines for Minimizing a Sum of Euclidean

Method of Orienting Curves

(ロ) (同) (E) (E) (E)

Method of Orienting Curves

• introduced by Phu (in Optimization, 1987, in NFAO, 1991), for solving exactly Optimal Control Problem (P):

Method of Orienting Curves

Method of Orienting Curves

• introduced by Phu (in Optimization, 1987, in NFAO, 1991), for solving exactly Optimal Control Problem (P):

Local maximal principal \Longrightarrow

New concepts: Final curve, Orienting

 $\mathsf{curve} \Longrightarrow$

optimal solution of (P) consists of parts of orienting curves and a final curve.

• Minimizing a Sum of Euclidean Norms (1):

Method of Orienting Curves

Method of Orienting Curves

- introduced by Phu (in Optimization, 1987, in NFAO, 1991), for solving exactly Optimal Control Problem (P):
- Local maximal principal \Longrightarrow New concepts: Final curve, Orienting curve \Longrightarrow
- optimal solution of (P) consists of parts of orienting curves and a final curve.

Method of Orienting Curves

Method of Orienting Curves

• introduced by Phu (in Optimization, 1987, in NFAO, 1991), for solving exactly Optimal Control Problem (P):

Local maximal principal \implies New concepts: Final curve, Orienting curve \implies optimal solution of (P) consists of parts of orienting curves and a final curve.

Method of Orienting Curves

Method of Orienting Curves

• introduced by Phu (in Optimization, 1987, in NFAO, 1991), for solving exactly Optimal Control Problem (P):

Local maximal principal \implies New concepts: Final curve, Orienting curve \implies optimal solution of (P) consists of parts of orienting curves and a final curve.

Method of Orienting Curves

Method of Orienting Curves

• introduced by Phu (in Optimization, 1987, in NFAO, 1991), for solving exactly Optimal Control Problem (P):

Local maximal principal \implies New concepts: Final curve, Orienting curve \implies optimal solution of (P) consists of

parts of orienting curves and a final curve.

Method of Orienting Curves

Method of Orienting Curves

• introduced by Phu (in Optimization, 1987, in NFAO, 1991), for solving exactly Optimal Control Problem (P):

Local maximal principal \implies New concepts: Final curve, Orienting curve \implies optimal solution of (P) consists of

parts of orienting curves and a final curve.

Method of Orienting Curves

Method of Orienting Curves

• introduced by Phu (in Optimization, 1987, in NFAO, 1991), for solving exactly Optimal Control Problem (P):

Local maximal principal \Longrightarrow New concepts: Final curve, Orienting curve \Longrightarrow

optimal solution of (P) consists of parts of orienting curves and a final curve.

Method of Orienting Curves

Method of Orienting Curves

- Optimal control problem (P):
- Final curve
- Orienting curve
- optimal solution consists of parts of orienting curves and a final curve.

・ 同 ト ・ ヨ ト ・ ヨ

Method of Orienting Curves

Method of Orienting Curves

- Optimal control problem (P): Final curve
- Orienting curve
- optimal solution consists of parts of orienting curves and a final curve.
- Minimizing a Sum of Euclidean Norms (1): Can it be solved exactly by the idea of the Method of Orienting Curves above? Final curve \rightarrow Final line? Orienting curve \rightarrow Orienting line? Difficulty: First and final points, boundaries α_1, α_2 are unknown!!!

A (1) > A (1) > A

Method of Orienting Lines Exact Algorithm Restricted Areas and Application Example

Method of Orienting Lines

Take $||p_m(a_m)|| = \max_{1 \le i \le k} \{||p_i(a_i)||\}$. Then $p_m(a_m)$ belongs to the solution Q(a) of Problem (1). Let α be

the sector of the circle radius $\max\{||p_i|| : m \le i \le k\}$ centered at 0, between two rays $\overrightarrow{0p_m}$ and $\overrightarrow{0p_k}$ contains $p_m(a_m), \ldots, p_i(a_k)$.

 \implies The path formed by the solution Q(a) of Problem (1) is the shortest path inside the domain formed by the polyline $\alpha_1 := p_m(a_m) \dots p_i(a_k)$ and $\alpha_1 := \operatorname{arc}_{\alpha}$ with unknown final point.

Method of Orienting Lines Exact Algorithm Restricted Areas and Application Example

Method of Orienting Lines

 $\begin{array}{l} \rightarrow \text{ Boundaries:} \\ \alpha_1 := p_m(a_m) \dots p_i(a_k), \ \alpha_1 := \operatorname{arc}_{\alpha}. \\ \rightarrow \text{ We start from } p_m(a_m) \text{ to} \\ \text{ construct final line and orienting lines} \end{array}$

イロト イポト イヨト イヨト

Method of Orienting Lines Exact Algorithm Restricted Areas and Application Example

Method of Orienting Lines

 $\begin{array}{l} \rightarrow \text{ Boundaries:} \\ \alpha_1 := p_m(a_m) \dots p_i(a_k), \ \alpha_1 := \operatorname{arc}_{\alpha}. \\ \rightarrow \text{ We start from } p_m(a_m) \text{ to} \\ \text{ construct final line and orienting lines} \end{array}$

イロン イヨン イヨン イヨン

Method of Orienting Lines Exact Algorithm Restricted Areas and Application Example

Method of Orienting Lines

→ Boundaries: $\alpha_1 := p_m(a_m) \dots p_i(a_k), \ \alpha_1 := \operatorname{arc}_{\alpha}.$ → We start from $p_m(a_m)$ to construct final line and orienting lines

イロト イヨト イヨト イヨト

Method of Orienting Lines Exact Algorithm Restricted Areas and Application Example

Method of Orienting Lines

→ Boundaries: $\alpha_1 := p_m(a_m) \dots p_i(a_k), \ \alpha_1 := \operatorname{arc}_{\alpha}.$ → We start from $p_m(a_m)$ to construct final line and orienting lines

イロト イヨト イヨト イヨト

Method of Orienting Lines Exact Algorithm Restricted Areas and Application Example

Method of Orienting Lines

→ Boundaries: $\alpha_1 := p_m(a_m) \dots p_i(a_k), \ \alpha_1 := \operatorname{arc}_{\alpha}.$ → We start from $p_m(a_m)$ to construct final line and orienting lines

イロト イヨト イヨト イヨト

Method of Orienting Lines Exact Algorithm Restricted Areas and Application Example

Method of Orienting Lines

 $\begin{array}{l} \rightarrow \text{ Boundaries:} \\ \alpha_1 := p_m(a_m) \dots p_i(a_k), \ \alpha_1 := \operatorname{arc}_{\alpha}. \\ \rightarrow \text{ We start from } p_m(a_m) \text{ to} \\ \text{ construct final line and orienting lines} \end{array}$

イロト イポト イヨト イヨト

Method of Orienting Lines Exact Algorithm Restricted Areas and Application Example

Method of Orienting Lines

 $\begin{array}{l} \rightarrow \text{ Boundaries:} \\ \alpha_1 := p_m(a_m) \dots p_i(a_k), \ \alpha_1 := \operatorname{arc}_{\alpha}. \\ \rightarrow \text{ We start from } p_m(a_m) \text{ to} \\ \text{ construct final line and orienting lines} \end{array}$

イロト イポト イヨト イヨト

Method of Orienting Lines Exact Algorithm Restricted Areas and Application Example

Final Line and Orienting Line

Let $p \in Q(a)$ (solution of Problem (1)), $ar{p} \in 0p_k$ such that $p\bar{p} \perp 0p'_k$ z is on or right of $p\bar{p} \quad \forall z \in Q(a) \setminus \{p_k\}$, z between p and p_{k-1} p_k is right (on or left, respectively) of $p\bar{p}$ $\implies p\bar{p} \ (pp_k, \text{ respectively}) \text{ is a final line through } p.$ $p_1 = p_1(a)$ arc_{α} α $p = p(a) = p_k$ $p_{k} = p_{k}(a)$ 31.1€

Phan Thanh An^{1,2}, Dinh Thanh Giang², and Le Hong Trang²,

Method of Orienting Lines for Minimizing a Sum of Euclidean

Method of Orienting Lines Exact Algorithm Restricted Areas and Application Example

Final Line and Orienting Line

 $p, q \in Q(a) \setminus \{p_k\}$ such that qbetween p and p_{k-1} . z is on or right of $\overrightarrow{pq} \forall z \in Q(a)$ between p and p_k , $\implies pq$ is an *orienting line* through p.

・ロン ・回 と ・ ヨ と ・ ヨ と

Method of Orienting Lines Exact Algorithm Restricted Areas and Application Example

Exact Algorithm

We now determine $Q(a) = Q^{R}(t^{*})$ (a part of solution of Problem (1)).

Exact solution of (1) consists of parts of orienting lines and final lines. **1.** Begin at p_m . Set l = 1. Then, $q_1 = p_m$.

2. Consider q_l .

If there is a final line through q_1 go to **4** else, there is an orienting line through q_1 , go to **3**.

3. Let $q_l p_{k_l^*}$ be an orienting line with $p_{k_l^*}$ as its transfer point. Then, $p_{k_l^*} \in Q^R(t^*)$. Set $q_{l+1} = p_{k_l^*}$ and l = l+1, go to **2**. **4.** Let $q_l q$ be the final line, where $q \in \overrightarrow{p_k}$. Then $Q^R(t^*)$ includes $\{q_1, \ldots, q_l, q\}$.

Method of Orienting Lines Exact Algorithm Restricted Areas and Application Example

Exact Algorithm

We now determine $Q(a) = Q^{R}(t^{*})$ (a part of solution of Problem (1)).

Exact solution of (1) consists of parts of orienting lines and final lines. **1.** Begin at p_m . Set l = 1. Then, $q_1 = p_m$.

2. Consider q_l .

If there is a final line through q_1 go to **4** else, there is an orienting line through q_1 , go to **3**.

3. Let $q_l p_{k_l^*}$ be an orienting line with $p_{k_l^*}$ as its transfer point. Then, $p_{k_l^*} \in Q^R(t^*)$. Set $q_{l+1} = p_{k_l^*}$ and l = l+1, go to **2**. **4.** Let $q_l q$ be the final line, where $q \in \overrightarrow{p_k}$.

Then $Q^R(t^*)$ includes $\{q_1, \ldots, q_l, q\}$.

Method of Orienting Lines Exact Algorithm Restricted Areas and Application Example

Exact Algorithm

We now determine $Q(a) = Q^{R}(t^{*})$ (a part of solution of Problem (1)).

Exact solution of (1) consists of parts of orienting lines and final lines.

- **1.** Begin at p_m . Set l = 1. Then, $q_1 = p_m$.
- **2.** Consider q_l .

If there is a final line through q_1 go to **4** else, there is an orienting line through q_1 , go to **3**.

3. Let $q_l p_{k_l^*}$ be an orienting line with $p_{k_l^*}$ as its transfer point. Then, $p_{k_l^*} \in Q^R(t^*)$. Set $q_{l+1} = p_{k_l^*}$ and l = l+1, go to **2**. **4.** Let $q_l q$ be the final line, where $q \in \overrightarrow{p_k}$.

Then $Q^R(t^*)$ includes $\{q_1, \ldots, q_l, q\}$.

Method of Orienting Lines Exact Algorithm Restricted Areas and Application Example

Exact Algorithm

We now determine $Q(a) = Q^{R}(t^{*})$ (a part of solution of Problem (1)).

Exact solution of (1) consists of parts of orienting lines and final lines. 1. Begin at p_m . Set l = 1. Then, $q_1 = p_m$.

2. Consider q_l .

If there is a final line through q_1 go to **4** else, there is an orienting line through q_1 , go to **3**.

3. Let $q_l p_{k_l^*}$ be an orienting line with $p_{k_l^*}$ as its transfer point. Then, $p_{k_l^*} \in Q^R(t^*)$. Set $q_{l+1} = p_{k_l^*}$ and l = l+1, go to **2**.

4. Let $q_l q$ be the final line, where $q \in \overrightarrow{p_k}$. Then $Q^R(t^*)$ includes $\{q_1, \ldots, q_l, q\}$.

Method of Orienting Lines Exact Algorithm Restricted Areas and Application Example

Exact Algorithm

We now determine $Q(a) = Q^{R}(t^{*})$ (a part of solution of Problem (1)).

Exact solution of (1) consists of parts of orienting lines and final lines. **1.** Begin at p_m . Set l = 1. Then, $q_1 = p_m$.

2. Consider q_I .

If there is a final line through q_1 go to **4** else, there is an orienting line through q_1 , go to **3**.

3. Let $q_l p_{k_l^*}$ be an orienting line with $p_{k_l^*}$ as its transfer point. Then, $p_{k_l^*} \in Q^R(t^*)$. Set $q_{l+1} = p_{k_l^*}$ and l = l+1, go to **2**.

4. Let $q_l q$ be the final line, where $q \in \overrightarrow{p_k}$. Then $Q^R(t^*)$ includes $\{q_1, \ldots, q_l, q\}$.

Method of Orienting Lines Exact Algorithm Restricted Areas and Application Example

Exact Algorithm

We now determine $Q(a) = Q^{R}(t^{*})$ (a part of solution of Problem (1)).

Exact solution of (1) consists of parts of orienting lines and final lines. 1. Begin at p_m . Set l = 1. Then, $q_1 = p_m$.

2. Consider q_l .

If there is a final line through q_1 go to **4** else, there is an orienting line through q_1 , go to **3**.

3. Let $q_l p_{k_l^*}$ be an orienting line with $p_{k_l^*}$ as its transfer point. Then, $p_{k_l^*} \in Q^R(t^*)$. Set $q_{l+1} = p_{k_l^*}$ and l = l+1, go to **2**.

4. Let $q_l q$ be the final line, where $q \in \overrightarrow{p_k}$. Then $Q^R(t^*)$ includes $\{q_1, \ldots, q_l, q\}$.

Method of Orienting Lines Exact Algorithm Restricted Areas and Application Example

Exact Algorithm

We now determine $Q(a) = Q^{R}(t^{*})$ (a part of solution of Problem (1)).

Exact solution of (1) consists of parts of orienting lines and final lines. 1. Begin at p_m . Set l = 1. Then, $q_1 = p_m$.

2. Consider q_I .

If there is a final line through q_1 go to **4** else, there is an orienting line through q_1 , go to **3**.

3. Let $q_l p_{k_l^*}$ be an orienting line with $p_{k_l^*}$ as its transfer point. Then, $p_{k_l^*} \in Q^R(t^*)$. Set $q_{l+1} = p_{k_l^*}$ and l = l+1, go to **2**.

4. Let $q_l q$ be the final line, where $q \in \overrightarrow{p_k}$. Then $Q^R(t^*)$ includes $\{q_1, \ldots, q_l, q\}$.

Method of Orienting Lines Exact Algorithm Restricted Areas and Application Example

Exact Algorithm

We now determine $Q(a) = Q^{R}(t^{*})$ (a part of solution of Problem (1)).

Exact solution of (1) consists of parts of orienting lines and final lines. **1.** Begin at p_m . Set l = 1. Then, $q_1 = p_m$.

2. Consider q_I .

If there is a final line through q_1 go to **4** else, there is an orienting line through q_1 , go to **3**.

3. Let $q_l p_{k_l^*}$ be an orienting line with $p_{k_l^*}$ as its transfer point. Then, $p_{k_l^*} \in Q^R(t^*)$. Set $q_{l+1} = p_{k_l^*}$ and l = l+1, go to **2**.

4. Let $q_l q$ be the final line, where $q \in \overrightarrow{p_k}$. Then $Q^R(t^*)$ includes $\{q_1, \ldots, q_l, q\}$.

Method of Orienting Lines Exact Algorithm Restricted Areas and Application Example

Exact Algorithm

We now determine $Q(a) = Q^{R}(t^{*})$ (a part of solution of Problem (1)).

Exact solution of (1) consists of parts of orienting lines and final lines. 1. Begin at p_m . Set l = 1. Then, $q_1 = p_m$.

2. Consider q_I .

If there is a final line through q_1 go to **4** else, there is an orienting line through q_1 , go to **3**.

3. Let $q_l p_{k_l^*}$ be an orienting line with $p_{k_l^*}$ as its transfer point. Then, $p_{k_l^*} \in Q^R(t^*)$. Set $q_{l+1} = p_{k_l^*}$ and l = l+1, go to **2**.

4. Let $q_l q$ be the final line, where $q \in \overrightarrow{p_k}$. Then $Q^R(t^*)$ includes $\{q_1, \ldots, q_l, q\}$.

Method of Orienting Lines Exact Algorithm Restricted Areas and Application Example

Exact Algorithm

We now determine $Q(a) = Q^{R}(t^{*})$ (a part of solution of Problem (1)).

Exact solution of (1) consists of parts of orienting lines and final lines. **1.** Begin at p_m . Set l = 1. Then, $q_1 = p_m$.

2. Consider q_l .

If there is a final line through q_1 go to **4** else, there is an orienting line through q_1 , go to **3**.

3. Let $q_l p_{k_l^*}$ be an orienting line with $p_{k_l^*}$ as its transfer point. Then, $p_{k_l^*} \in Q^R(t^*)$. Set $q_{l+1} = p_{k_l^*}$ and l = l+1, go to **2**.

4. Let $q_l q$ be the final line, where $q \in \overrightarrow{p_k}$. Then $Q^R(t^*)$ includes $\{q_1, \ldots, q_l, q\}$.

Method of Orienting Lines Exact Algorithm Restricted Areas and Application Example

Exact Algorithm

We now determine $Q(a) = Q^{R}(t^{*})$ (a part of solution of Problem (1)).

Exact solution of (1) consists of parts of orienting lines and final lines. **1.** Begin at p_m . Set l = 1. Then, $q_1 = p_m$.

2. Consider q_l .

If there is a final line through q_l go to **4** else, there is an orienting line through q_l , go to **3**.

3. Let $q_l p_{k_l^*}$ be an orienting line with $p_{k_l^*}$ as its transfer point. Then, $p_{k_l^*} \in Q^R(t^*)$. Set $q_{l+1} = p_{k_l^*}$ and l = l+1, go to **2**.

4. Let $q_l q$ be the final line, where $q \in \overrightarrow{p_k}$. Then $Q^R(t^*)$ includes $\{q_1, \ldots, q_l, q\}$.

Method of Orienting Lines Exact Algorithm Restricted Areas and Application Example

Exact Algorithm

We now determine $Q(a) = Q^{R}(t^{*})$ (a part of solution of Problem (1)).

Exact solution of (1) consists of parts of orienting lines and final lines. **1.** Begin at p_m . Set l = 1. Then, $q_1 = p_m$.

2. Consider q_l .

If there is a final line through q_1 go to **4** else, there is an orienting line through q_1 , go to **3**.

3. Let $q_l p_{k_l^*}$ be an orienting line with $p_{k_l^*}$ as its transfer point. Then, $p_{k_l^*} \in Q^R(t^*)$. Set $q_{l+1} = p_{k_l^*}$ and l = l+1, go to **2**.

4. Let $q_l q$ be the final line, where $q \in \overrightarrow{p_k}$. Then $Q^R(t^*)$ includes $\{q_1, \ldots, q_l, q\}$.

Method of Orienting Lines Exact Algorithm Restricted Areas and Application Example

Exact Algorithm

We now determine $Q(a) = Q^{R}(t^{*})$ (a part of solution of Problem (1)).

Exact solution of (1) consists of parts of orienting lines and final lines. **1.** Begin at p_m . Set l = 1. Then, $q_1 = p_m$.

2. Consider q_l .

If there is a final line through q_1 go to **4** else, there is an orienting line through q_1 , go to **3**.

3. Let $q_l p_{k_l^*}$ be an orienting line with $p_{k_l^*}$ as its transfer point. Then, $p_{k_l^*} \in Q^R(t^*)$. Set $q_{l+1} = p_{k_l^*}$ and l = l+1, go to **2**.

4. Let $q_l q$ be the final line, where $q \in \overrightarrow{p_k}$. Then $Q^R(t^*)$ includes $\{q_1, \ldots, q_l, q\}$.

Method of Orienting Lines Exact Algorithm Restricted Areas and Application Example

Restricted Areas

It helps to determine quickly if $q_I p$ is orienting line or not:

Method of Orienting Lines Exact Algorithm Restricted Areas and Application Example

Application Example

$$\inf_{t} \mathcal{F}(t) \tag{2}$$

イロン イロン イヨン イヨン 三日

where

$$\begin{aligned} \mathcal{F}(t) &= \sqrt{(2t_7 - 30t_6)^2 + 36t_6^2} + \sqrt{(30t_6 - 53t_5)^2 + (6t_6 - 16t_5)^2} \\ &+ \sqrt{(53t_5 - 4t_4)^2 + (16t_5 - 5t_4)^2} + \sqrt{(4t_4 - 3t_3)^2 + (5t_4 - 7t_3)^2} \\ &+ \sqrt{(3t_3 - t_2)^2 + (7t_3 - 21t_2)^2} + \sqrt{(-5t_1 - t_2)^2 + (5t_1 - 21t_2)^2} \end{aligned}$$

and $t_7 \ge a_7 = 1, t_6 \ge a_6 = 1.5, t_5 \ge a_5 = 1, t_4 \ge a_4 = 14, t_3 \ge a_3 = 3, t_2 \ge a_2 = 5$ and $t_1 \ge a_1 = 3.5.$

Method of Orienting Lines Exact Algorithm Restricted Areas and Application Example

イロン イヨン イヨン イヨン

3

Application Example

	Approximation algorithms	Our exact algorithm
	-(2) written as a second	-Final lines, orienting lines
	order cone program	-Restricted area
	–interior-point methods	
$\mathcal{F}(t^*)$	pprox 209.636414	= 56/5 + 1512/265 + 2814/53
		$+(\sqrt{646594}+\sqrt{1530400})/33$
		$+55\sqrt{2}$
t_1^*	pprox 9.99998	= 10
t_2^*	≈ 5	= 5
$t_3^{\overline{*}}$	pprox 11.9829	= 395/33
t_4^*	pprox 14	= 14
t_5^*	pprox 1.0566	= 56/53
t_6^*	pprox 1.8666	= 28/15
t [*] 1 t [*] 2 t [*] 3 t [*] 4 t [*] 5 t ⁶ 6 t [*] 7	pprox 28.0002	= 28

Conclusion

Conclusion

Phan Thanh An^{1,2}, Dinh Thanh Giang², and Le Hong Trang², Method of Orienting Lines for Minimizing a Sum of Euclidean

ヘロン ヘヨン ヘヨン ヘヨン

Conclusion

Minimizing a sum of Euclidean norms in 2D (in Convex Optimization) ⇒ A 2D shortest path problem (1) (in Computational Geometry)

・ロン ・回と ・ヨン・

Conclusion

- Minimizing a sum of Euclidean norms in 2D (in Convex Optimization) \implies A 2D shortest path problem (1) (in Computational Geometry)
- Idea of the method of orienting curves (for solving some optimal control problems) is applied for solving (1) to get exact solution. ⇒ method of orienting lines.

・ロト ・回ト ・ヨト ・ヨト

Conclusion

- Minimizing a sum of Euclidean norms in 2D (in Convex Optimization) \implies A 2D shortest path problem (1) (in Computational Geometry)
- Idea of the method of orienting curves (for solving some optimal control problems) is applied for solving (1) to get exact solution. ⇒ method of orienting lines.

This method does not rely on triangulation and graph tools.

(ロ) (同) (E) (E) (E)

Conclusion

- Minimizing a sum of Euclidean norms in 2D (in Convex Optimization) \implies A 2D shortest path problem (1) (in Computational Geometry)
- Idea of the method of orienting curves (for solving some optimal control problems) is applied for solving (1) to get exact solution. ⇒ method of orienting lines.
 This method does not rely on triangulation and graph tools.
- Open question: Can minimizing a sum of Euclidean norms in higher dimmensions with nonlinear p_i be solved *exactly* in the same manner? ⇒ Exact solution consists of parts of orienting Xs and final Xs???

(ロ) (同) (E) (E) (E)

THANK YOU FOR YOUR ATTENTION!

Phan Thanh An^{1,2}, Dinh Thanh Giang², and Le Hong Trang², Method of Orienting Lines for Minimizing a Sum of Euclidean

・ロン ・回 と ・ 回 と ・ 回 と

THANK YOU FOR YOUR ATTENTION!

Phan Thanh An^{1,2}, Dinh Thanh Giang², and Le Hong Trang², Method of Orienting Lines for Minimizing a Sum of Euclidean

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・