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Minimizing a Sum of Euclidean Norms

min
t

(

F(t1, . . . , tk) =
k−1
∑

i=1

‖pi (ti )− pi+1(ti+1)‖
)

, (1)

where ti ≥ ai > 0, pi : IR
1 → IR2, (i = 1, . . . , k) are linear, k ≥ 3

and ‖ · ‖ is an Euclidean norm in IR2 =⇒
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• (1)/(1∗) is rewritten as a second-order cone program then solved
approximately by interior-point methods. (Xue and Ye (1997),
Lobo, Vandenberghe, Boyd, and Lebret (1998), etc),
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Minimizing a Sum of Euclidean Norms

min
t

(

F(t1, . . . , tk) =
k−1
∑

i=1

‖pi (ti )− pi+1(ti+1)‖
)

, (1)

where ti ≥ ai > 0, pi : IR
1 → IR2, (i = 1, . . . , k) are linear, k ≥ 3

and ‖ · ‖ is an Euclidean norm in IR2 =⇒ A special case of
minx∈S⊂IRn

(

F(x) =
∑

m

i=1 ‖AT
i
x − bi‖

)

(1∗)

• (1)/(1∗) is rewritten as a second-order cone program then solved
approximately by interior-point methods. (Xue and Ye (1997),
Lobo, Vandenberghe, Boyd, and Lebret (1998), etc), → solutions
of (1) are approximate!

• How can we find exact solutions of Problem (1)/(1∗)?
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Geometrical Form of Problem (1)

min
t

(
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k−1
∑

i=1

‖pi (ti )− pi+1(ti+1)‖
)

, (1)

ti ≥ ai > 0

pi : IR
1 → IR2, (i = 1, . . . , k)
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Method of Orienting Curves

Optimal Control Problem

Some optimal control problems can be stated in the form

(P) min
x ,u

∫

tf

t0

F (t, x(t), u(t))dt

subject to

ẋ(t) = f (t, x(t), u(t)), t ∈ [t0, tf ]

α1(t) ≥ x(t) ≥ α2(t), x(t0) = x0, x(tf ) = xf

g(t, u(t)) ≥ 0, t ∈ [t0, tf ].
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Optimal Control Problem

Some optimal control problems can be stated in the form

(P) min
x ,u

∫

tf

t0

F (t, x(t), u(t))dt

subject to

ẋ(t) = f (t, x(t), u(t)), t ∈ [t0, tf ]

α1(t) ≥ x(t) ≥ α2(t), x(t0) = x0, x(tf ) = xf

g(t, u(t)) ≥ 0, t ∈ [t0, tf ].

Geometrical form of (P):
α 2

α1

x x
0 f

t0 tf

α 2

α1

x x
0 f

t0 tf

X*
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Method of Orienting Curves

Method of Orienting Curves

• introduced by Phu (in Optimization, 1987, in NFAO, 1991), for
solving exactly Optimal Control Problem (P):
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Local maximal principal =⇒
New concepts: Final curve, Orienting
curve =⇒
optimal solution of (P) consists of
parts of orienting curves and a final
curve.
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• Optimal control problem (P):
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Orienting curve
optimal solution consists of parts of
orienting curves and a final curve.
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• Optimal control problem (P):
Final curve
Orienting curve
optimal solution consists of parts of
orienting curves and a final curve.

z
1

α 2

α1

z2
z

3

2
x

x3

curveting

orie
n

x1

x x
0 f

x*

ti
ng

or
ien

 c
ur

ve

t0 tf

final curve

• Minimizing a Sum of Euclidean
Norms (1): Can it be solved exactly
by the idea of the Method of
Orienting Curves above?
Final curve → Final line? Orienting
curve → Orienting line?
Difficulty: First and final points,
boundaries α1, α2 are unknown!!!
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Method of Orienting Lines
Exact Algorithm
Restricted Areas and Application Example

Method of Orienting Lines

Take ‖pm(am)‖ = max1≤i≤k{‖pi (ai )‖}. Then pm(am) belongs to
the solution Q(a) of Problem (1).
Let α be

the sector of the circle

radius max{‖pi‖ : m ≤ i ≤ k} centered at 0,

between two rays
−−→
0pm and

−→
0pk contains pm(am), . . . , pi (ak).

=⇒ The path formed by the solution Q(a) of Problem (1) is the
shortest path inside the domain formed by the polyline
α1 := pm(am) . . . pi (ak) and α1 := arcα with unknown final point.
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Method of Orienting Lines
Exact Algorithm
Restricted Areas and Application Example

Method of Orienting Lines

→ Boundaries:
α1 := pm(am) . . . pi (ak), α1 := arcα.
→ We start from pm(am) to
construct final line and orienting lines
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Exact solution of
(1) consists of
parts of orienting
lines and final
lines.

1. Begin at pm. Set l = 1. Then,
q1 = pm.

2. Consider ql .

If there is a final line through ql go to 4

else, there is an orienting line through
ql , go to 3.

3. Let qlpk∗

l
be an orienting line with pk∗

l

as its transfer point. Then, pk∗

l
∈ QR(t∗).

Set ql+1 = pk∗

l
and l = l + 1, go to 2.

4. Let qlq be the final line, where q ∈ −→pk .
Then QR(t∗) includes {q1, . . . , ql , q}.
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(1) consists of
parts of orienting
lines and final
lines.

1. Begin at pm. Set l = 1. Then,
q1 = pm.

2. Consider ql .

If there is a final line through ql go to 4

else, there is an orienting line through
ql , go to 3.

3. Let qlpk∗

l
be an orienting line with pk∗

l

as its transfer point. Then, pk∗

l
∈ QR(t∗).

Set ql+1 = pk∗

l
and l = l + 1, go to 2.

4. Let qlq be the final line, where q ∈ −→pk .
Then QR(t∗) includes {q1, . . . , ql , q}.
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(1) consists of
parts of orienting
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1. Begin at pm. Set l = 1. Then,
q1 = pm.

2. Consider ql .

If there is a final line through ql go to 4

else, there is an orienting line through
ql , go to 3.

3. Let qlpk∗

l
be an orienting line with pk∗

l

as its transfer point. Then, pk∗

l
∈ QR(t∗).

Set ql+1 = pk∗

l
and l = l + 1, go to 2.

4. Let qlq be the final line, where q ∈ −→pk .
Then QR(t∗) includes {q1, . . . , ql , q}.
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(1) consists of
parts of orienting
lines and final
lines.

1. Begin at pm. Set l = 1. Then,
q1 = pm.

2. Consider ql .

If there is a final line through ql go to 4

else, there is an orienting line through
ql , go to 3.

3. Let qlpk∗

l
be an orienting line with pk∗

l

as its transfer point. Then, pk∗

l
∈ QR(t∗).

Set ql+1 = pk∗

l
and l = l + 1, go to 2.

4. Let qlq be the final line, where q ∈ −→pk .
Then QR(t∗) includes {q1, . . . , ql , q}.
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Exact solution of
(1) consists of
parts of orienting
lines and final
lines.

1. Begin at pm. Set l = 1. Then,
q1 = pm.

2. Consider ql .

If there is a final line through ql go to 4

else, there is an orienting line through
ql , go to 3.

3. Let qlpk∗

l
be an orienting line with pk∗

l

as its transfer point. Then, pk∗

l
∈ QR(t∗).

Set ql+1 = pk∗

l
and l = l + 1, go to 2.

4. Let qlq be the final line, where q ∈ −→pk .
Then QR(t∗) includes {q1, . . . , ql , q}.
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(1)).
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Exact solution of
(1) consists of
parts of orienting
lines and final
lines.

1. Begin at pm. Set l = 1. Then,
q1 = pm.

2. Consider ql .

If there is a final line through ql go to 4

else, there is an orienting line through
ql , go to 3.

3. Let qlpk∗

l
be an orienting line with pk∗

l

as its transfer point. Then, pk∗

l
∈ QR(t∗).

Set ql+1 = pk∗

l
and l = l + 1, go to 2.

4. Let qlq be the final line, where q ∈ −→pk .
Then QR(t∗) includes {q1, . . . , ql , q}.
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(1) consists of
parts of orienting
lines and final
lines.

1. Begin at pm. Set l = 1. Then,
q1 = pm.

2. Consider ql .

If there is a final line through ql go to 4

else, there is an orienting line through
ql , go to 3.

3. Let qlpk∗

l
be an orienting line with pk∗

l

as its transfer point. Then, pk∗

l
∈ QR(t∗).

Set ql+1 = pk∗

l
and l = l + 1, go to 2.

4. Let qlq be the final line, where q ∈ −→pk .
Then QR(t∗) includes {q1, . . . , ql , q}.
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Exact solution of
(1) consists of
parts of orienting
lines and final
lines.

1. Begin at pm. Set l = 1. Then,
q1 = pm.

2. Consider ql .

If there is a final line through ql go to 4

else, there is an orienting line through
ql , go to 3.

3. Let qlpk∗

l
be an orienting line with pk∗

l

as its transfer point. Then, pk∗

l
∈ QR(t∗).

Set ql+1 = pk∗

l
and l = l + 1, go to 2.

4. Let qlq be the final line, where q ∈ −→pk .
Then QR(t∗) includes {q1, . . . , ql , q}.
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Restricted Areas
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Application Example

inf
t
F(t) (2)

where

F(t) =
√

(2t7 − 30t6)2 + 36t26 +
√

(30t6 − 53t5)2 + (6t6 − 16t5)2

+
√

(53t5 − 4t4)2 + (16t5 − 5t4)2 +
√

(4t4 − 3t3)2 + (5t4 − 7t3)2

+
√

(3t3 − t2)2 + (7t3 − 21t2)2 +
√

(−5t1 − t2)2 + (5t1 − 21t2)2

and t7 ≥ a7 = 1, t6 ≥ a6 = 1.5, t5 ≥ a5 = 1, t4 ≥ a4 = 14, t3 ≥
a3 = 3, t2 ≥ a2 = 5 and t1 ≥ a1 = 3.5.
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Application Example

Approximation algorithms Our exact algorithm

–(2) written as a second –Final lines, orienting lines
order cone program –Restricted area

–interior-point methods

F(t∗) ≈ 209.636414 = 56/5 + 1512/265 + 2814/53

+
(√

646594 +
√
1530400

)

/33

+55
√
2

t∗1 ≈ 9.99998 = 10
t∗2 ≈ 5 = 5
t∗3 ≈ 11.9829 = 395/33
t∗4 ≈ 14 = 14
t∗5 ≈ 1.0566 = 56/53
t∗6 ≈ 1.8666 = 28/15
t∗7 ≈ 28.0002 = 28
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– Minimizing a sum of Euclidean norms in 2D (in Convex
Optimization) =⇒ A 2D shortest path problem (1) (in
Computational Geometry)
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– Minimizing a sum of Euclidean norms in 2D (in Convex
Optimization) =⇒ A 2D shortest path problem (1) (in
Computational Geometry)

– Idea of the method of orienting curves (for solving some
optimal control problems) is applied for solving (1) to get
exact solution. =⇒ method of orienting lines.
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– Minimizing a sum of Euclidean norms in 2D (in Convex
Optimization) =⇒ A 2D shortest path problem (1) (in
Computational Geometry)

– Idea of the method of orienting curves (for solving some
optimal control problems) is applied for solving (1) to get
exact solution. =⇒ method of orienting lines.
This method does not rely on triangulation and graph tools.
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Conclusion

– Minimizing a sum of Euclidean norms in 2D (in Convex
Optimization) =⇒ A 2D shortest path problem (1) (in
Computational Geometry)

– Idea of the method of orienting curves (for solving some
optimal control problems) is applied for solving (1) to get
exact solution. =⇒ method of orienting lines.
This method does not rely on triangulation and graph tools.

– Open question: Can minimizing a sum of Euclidean norms in
higher dimmensions with nonlinear pi be solved exactly in the
same manner? =⇒ Exact solution consists of parts of
orienting Xs and final Xs???
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