Method of Orienting Lines for Minimizing a Sum of Euclidean Norms

Phan Thanh An ${ }^{1,2}$, Dinh Thanh Giang ${ }^{2}$, and Le Hong Trang ${ }^{2,3}$
${ }^{1}$ Institute of Mathematics, Hanoi, Vietnam
${ }^{2}$ CEMAT, Instituto Superior Técnico, Lisbon, Portugal
${ }^{3}$ OPTEC, K.U.Leuven, Belgium

Table of Contents

(1) Minimizing a Sum of Euclidean Norms
(2) Method of Orienting Curves for Optimal Control Problems

- Method of Orienting Curves
(3) Method of Orienting Lines for Minimizing a Sum of Euclidean Norms
- Method of Orienting Lines
- Exact Algorithm
- Restricted Areas and Application Example

4 Conclusion

Minimizing a Sum of Euclidean Norms

$$
\begin{equation*}
\min _{t}\left(\mathcal{F}\left(t_{1}, \ldots, t_{k}\right)=\sum_{i=1}^{k-1}\left\|p_{i}\left(t_{i}\right)-p_{i+1}\left(t_{i+1}\right)\right\|\right) \tag{1}
\end{equation*}
$$

where $t_{i} \geq a_{i}>0, p_{i}: \boldsymbol{R}^{1} \rightarrow \boldsymbol{R}^{2},(i=1, \ldots, k)$ are linear, $k \geq 3$ and $\|\cdot\|$ is an Euclidean norm in $\boldsymbol{R}^{2} \Longrightarrow$

Minimizing a Sum of Euclidean Norms

$$
\begin{equation*}
\min _{t}\left(\mathcal{F}\left(t_{1}, \ldots, t_{k}\right)=\sum_{i=1}^{k-1}\left\|p_{i}\left(t_{i}\right)-p_{i+1}\left(t_{i+1}\right)\right\|\right) \tag{1}
\end{equation*}
$$

where $t_{i} \geq a_{i}>0, p_{i}: \boldsymbol{R}^{1} \rightarrow \boldsymbol{R}^{2},(i=1, \ldots, k)$ are linear, $k \geq 3$ and $\|\cdot\|$ is an Euclidean norm in $\boldsymbol{R}^{2} \Longrightarrow$ A special case of $\min _{x \in S \subset R^{n}}\left(\mathcal{F}(x)=\sum_{i=1}^{m}\left\|A_{i}^{T} x-b_{i}\right\|\right) \quad\left(1^{*}\right)$

Minimizing a Sum of Euclidean Norms

$$
\begin{equation*}
\min _{t}\left(\mathcal{F}\left(t_{1}, \ldots, t_{k}\right)=\sum_{i=1}^{k-1}\left\|p_{i}\left(t_{i}\right)-p_{i+1}\left(t_{i+1}\right)\right\|\right) \tag{1}
\end{equation*}
$$

where $t_{i} \geq a_{i}>0, p_{i}: \boldsymbol{R}^{1} \rightarrow \boldsymbol{R}^{2},(i=1, \ldots, k)$ are linear, $k \geq 3$ and $\|\cdot\|$ is an Euclidean norm in $\boldsymbol{R}^{2} \Longrightarrow$ A special case of $\min _{x \in S \subset R^{n}}\left(\mathcal{F}(x)=\sum_{i=1}^{m}\left\|A_{i}^{T} x-b_{i}\right\|\right) \quad\left(1^{*}\right)$

- $(1) /\left(1^{*}\right)$ is rewritten as a second-order cone program then solved approximately by interior-point methods. (Xue and Ye (1997), Lobo, Vandenberghe, Boyd, and Lebret (1998), etc),

Minimizing a Sum of Euclidean Norms

$$
\begin{equation*}
\min _{t}\left(\mathcal{F}\left(t_{1}, \ldots, t_{k}\right)=\sum_{i=1}^{k-1}\left\|p_{i}\left(t_{i}\right)-p_{i+1}\left(t_{i+1}\right)\right\|\right) \tag{1}
\end{equation*}
$$

where $t_{i} \geq a_{i}>0, p_{i}: \boldsymbol{R}^{1} \rightarrow \boldsymbol{R}^{2},(i=1, \ldots, k)$ are linear, $k \geq 3$ and $\|\cdot\|$ is an Euclidean norm in $\boldsymbol{R}^{2} \Longrightarrow$ A special case of $\min _{x \in S \subset R^{n}}\left(\mathcal{F}(x)=\sum_{i=1}^{m}\left\|A_{i}^{T} x-b_{i}\right\|\right) \quad\left(1^{*}\right)$

- (1)/(1*) is rewritten as a second-order cone program then solved approximately by interior-point methods. (Xue and Ye (1997), Lobo, Vandenberghe, Boyd, and Lebret (1998), etc), \rightarrow solutions of (1) are approximate!

Minimizing a Sum of Euclidean Norms

$$
\begin{equation*}
\min _{t}\left(\mathcal{F}\left(t_{1}, \ldots, t_{k}\right)=\sum_{i=1}^{k-1}\left\|p_{i}\left(t_{i}\right)-p_{i+1}\left(t_{i+1}\right)\right\|\right) \tag{1}
\end{equation*}
$$

where $t_{i} \geq a_{i}>0, p_{i}: \boldsymbol{R}^{1} \rightarrow \boldsymbol{R}^{2},(i=1, \ldots, k)$ are linear, $k \geq 3$ and $\|\cdot\|$ is an Euclidean norm in $\boldsymbol{R}^{2} \Longrightarrow$ A special case of $\min _{x \in S \subset R^{n}}\left(\mathcal{F}(x)=\sum_{i=1}^{m}\left\|A_{i}^{T} x-b_{i}\right\|\right)$

- (1)/(1*) is rewritten as a second-order cone program then solved approximately by interior-point methods. (Xue and Ye (1997), Lobo, Vandenberghe, Boyd, and Lebret (1998), etc), \rightarrow solutions of (1) are approximate!
- How can we find exact solutions of Problem (1)/(1*) ?

Geometrical Form of Problem (1)

$$
\begin{align*}
& \quad \min _{t}\left(\mathcal{F}\left(t_{1}, \ldots, t_{k}\right)=\sum_{i=1}^{k-1}\left\|p_{i}\left(t_{i}\right)-p_{i+1}\left(t_{i+1}\right)\right\|\right), \tag{1}\\
& t_{i} \geq a_{i}>0 \\
& \begin{array}{l}
p_{i}: \boldsymbol{R}^{1} \rightarrow \boldsymbol{R}^{2},(i=1, \ldots, k) \\
\text { are linear. }
\end{array}
\end{align*}
$$

Geometrical Form of Problem (1)

$$
\begin{align*}
& \quad \min _{t}\left(\mathcal{F}\left(t_{1}, \ldots, t_{k}\right)=\sum_{i=1}^{k-1}\left\|p_{i}\left(t_{i}\right)-p_{i+1}\left(t_{i+1}\right)\right\|\right), \tag{1}\\
& t_{i} \geq a_{i}>0 \\
& p_{i}: \boldsymbol{R}^{1} \rightarrow \boldsymbol{R}^{2},(i=1, \ldots, k) \\
& \text { are linear. }
\end{align*}
$$

Geometrical Form of Problem (1)

$$
\begin{align*}
& \quad \min _{t}\left(\mathcal{F}\left(t_{1}, \ldots, t_{k}\right)=\sum_{i=1}^{k-1}\left\|p_{i}\left(t_{i}\right)-p_{i+1}\left(t_{i+1}\right)\right\|\right), \tag{1}\\
& t_{i} \geq a_{i}>0 \\
& p_{i}: \boldsymbol{R}^{1} \rightarrow \boldsymbol{R}^{2},(i=1, \ldots, k) \\
& \text { are linear. }
\end{align*}
$$

Optimal Control Problem

Some optimal control problems can be stated in the form

$$
\begin{equation*}
\min _{x, u} \int_{t_{0}}^{t_{f}} F(t, x(t), u(t)) d t \tag{P}
\end{equation*}
$$

subject to

$$
\begin{aligned}
& \dot{x}(t)=f(t, x(t), u(t)), t \in\left[t_{0}, t_{f}\right] \\
& \alpha_{1}(t) \geq x(t) \geq \alpha_{2}(t), x\left(t_{0}\right)=x_{0}, x\left(t_{f}\right)=x_{f} \\
& g(t, u(t)) \geq 0, t \in\left[t_{0}, t_{f}\right]
\end{aligned}
$$

Optimal Control Problem

Some optimal control problems can be stated in the form

$$
\begin{equation*}
\min _{x, u} \int_{t_{0}}^{t_{f}} F(t, x(t), u(t)) d t \tag{P}
\end{equation*}
$$

subject to

$$
\begin{aligned}
& \dot{x}(t)=f(t, x(t), u(t)), t \in\left[t_{0}, t_{f}\right] \\
& \alpha_{1}(t) \geq x(t) \geq \alpha_{2}(t), x\left(t_{0}\right)=x_{0}, x\left(t_{f}\right)=x_{f} \\
& g(t, u(t)) \geq 0, t \in\left[t_{0}, t_{f}\right]
\end{aligned}
$$

Geometrical form of (P):

Method of Orienting Curves

- introduced by Phu (in Optimization, 1987, in NFAO, 1991), for solving exactly Optimal Control Problem (P):

Method of Orienting Curves

- introduced by Phu (in Optimization, 1987, in NFAO, 1991), for solving exactly Optimal Control Problem (P):
Local maximal principal \Longrightarrow
New concepts: Final curve, Orienting curve \Longrightarrow
optimal solution of (P) consists of parts of orienting curves and a final curve.
- Minimizing a Sum of Euclidean Norms (1):

Method of Orienting Curves

- introduced by Phu (in Optimization, 1987, in NFAO, 1991), for solving exactly Optimal Control Problem (P):
Local maximal principal \Longrightarrow
New concepts: Final curve, Orienting curve \Longrightarrow
optimal solution of (P) consists of parts of orienting curves and a final curve.
- Minimizing a Sum of Euclidean Norms (1):

Method of Orienting Curves

- introduced by Phu (in Optimization, 1987, in NFAO, 1991), for solving exactly Optimal Control Problem (P):
Local maximal principal \Longrightarrow
New concepts: Final curve, Orienting curve \Longrightarrow
optimal solution of (P) consists of parts of orienting curves and a final curve.
- Minimizing a Sum of Euclidean Norms (1):

Method of Orienting Curves

- introduced by Phu (in Optimization, 1987, in NFAO, 1991), for solving exactly Optimal Control Problem (P):
Local maximal principal \Longrightarrow
New concepts: Final curve, Orienting curve \Longrightarrow optimal solution of (P) consists of parts of orienting curves and a final
 curve.
- Minimizing a Sum of Euclidean Norms (1):

Method of Orienting Curves

- introduced by Phu (in Optimization, 1987, in NFAO, 1991), for solving exactly Optimal Control Problem (P):
Local maximal principal \Longrightarrow
New concepts: Final curve, Orienting curve \Longrightarrow
optimal solution of (P) consists of parts of orienting curves and a final curve.
- Minimizing a Sum of Euclidean Norms (1):

Method of Orienting Curves

- introduced by Phu (in Optimization, 1987, in NFAO, 1991), for solving exactly Optimal Control Problem (P):
Local maximal principal \Longrightarrow
New concepts: Final curve, Orienting curve \Longrightarrow
optimal solution of (P) consists of parts of orienting curves and a final curve.
- Minimizing a Sum of Euclidean Norms (1):

Method of Orienting Curves

- introduced by Phu (in Optimization, 1987, in NFAO, 1991), for solving exactly Optimal Control Problem (P):
Local maximal principal \Longrightarrow
New concepts: Final curve, Orienting curve \Longrightarrow
optimal solution of (P) consists of parts of orienting curves and a final curve.
- Minimizing a Sum of Euclidean Norms (1):

Method of Orienting Curves

- Optimal control problem (P):

Final curve
Orienting curve
optimal solution consists of parts of orienting curves and a final curve.

Method of Orienting Curves

- Optimal control problem (P):

Final curve
Orienting curve
optimal solution consists of parts of orienting curves and a final curve.

- Minimizing a Sum of Euclidean Norms (1): Can it be solved exactly by the idea of the Method of Orienting Curves above?
Final curve \rightarrow Final line? Orienting curve \rightarrow Orienting line?
Difficulty: First and final points, boundaries α_{1}, α_{2} are unknown!!!

Method of Orienting Lines

Take $\left\|p_{m}\left(a_{m}\right)\right\|=\max _{1 \leq i \leq k}\left\{\left\|p_{i}\left(a_{i}\right)\right\|\right\}$. Then $p_{m}\left(a_{m}\right)$ belongs to the solution $Q(a)$ of Problem (1).
Let α be
the sector of the circle
radius $\max \left\{\left\|p_{i}\right\|: m \leq i \leq k\right\}$ centered at 0 , between two rays $\overrightarrow{0 p_{m}}$ and $\overrightarrow{0 p_{k}}$ contains $p_{m}\left(a_{m}\right), \ldots, p_{i}\left(a_{k}\right)$.
\Longrightarrow The path formed by the solution $Q(a)$ of Problem (1) is the shortest path inside the domain formed by the polyline $\alpha_{1}:=p_{m}\left(a_{m}\right) \ldots p_{i}\left(a_{k}\right)$ and $\alpha_{1}:=\operatorname{arc}_{\alpha}$ with unknown final point.

Minimizing a Sum of Euclidean Norms

Method of Orienting Lines

\rightarrow Boundaries:
$\alpha_{1}:=p_{m}\left(a_{m}\right) \ldots p_{i}\left(a_{k}\right), \alpha_{1}:=\operatorname{arc}_{\alpha}$.
\rightarrow We start from $p_{m}\left(a_{m}\right)$ to construct final line and orienting lines

0

Minimizing a Sum of Euclidean Norms

Method of Orienting Lines

\rightarrow Boundaries:
$\alpha_{1}:=p_{m}\left(a_{m}\right) \ldots p_{i}\left(a_{k}\right), \alpha_{1}:=\operatorname{arc}_{\alpha}$.
\rightarrow We start from $p_{m}\left(a_{m}\right)$ to construct final line and orienting lines

0

Minimizing a Sum of Euclidean Norms

Method of Orienting Lines

\rightarrow Boundaries:
$\alpha_{1}:=p_{m}\left(a_{m}\right) \ldots p_{i}\left(a_{k}\right), \alpha_{1}:=\operatorname{arc}_{\alpha}$.
\rightarrow We start from $p_{m}\left(a_{m}\right)$ to construct final line and orienting lines

Minimizing a Sum of Euclidean Norms

Method of Orienting Lines

\rightarrow Boundaries:
$\alpha_{1}:=p_{m}\left(a_{m}\right) \ldots p_{i}\left(a_{k}\right), \alpha_{1}:=\operatorname{arc}_{\alpha}$.
\rightarrow We start from $p_{m}\left(a_{m}\right)$ to construct final line and orienting lines

Minimizing a Sum of Euclidean Norms

Method of Orienting Lines

\rightarrow Boundaries:
$\alpha_{1}:=p_{m}\left(a_{m}\right) \ldots p_{i}\left(a_{k}\right), \alpha_{1}:=\operatorname{arc}_{\alpha}$.
\rightarrow We start from $p_{m}\left(a_{m}\right)$ to construct final line and orienting lines

Minimizing a Sum of Euclidean Norms

Method of Orienting Lines

\rightarrow Boundaries:
$\alpha_{1}:=p_{m}\left(a_{m}\right) \ldots p_{i}\left(a_{k}\right), \alpha_{1}:=\operatorname{arc}_{\alpha}$.
\rightarrow We start from $p_{m}\left(a_{m}\right)$ to construct final line and orienting lines

Minimizing a Sum of Euclidean Norms

Method of Orienting Lines

\rightarrow Boundaries:
$\alpha_{1}:=p_{m}\left(a_{m}\right) \ldots p_{i}\left(a_{k}\right), \alpha_{1}:=\operatorname{arc}_{\alpha}$.
\rightarrow We start from $p_{m}\left(a_{m}\right)$ to construct final line and orienting lines

Final Line and Orienting Line

Let $p \in Q(a)$ (solution of Problem (1)), $\bar{p} \in 0 p_{k}$ such that $p \bar{p} \perp \overrightarrow{0 p_{k}}$
z is on or right of $p \bar{p} \forall z \in Q(a) \backslash\left\{p_{k}\right\}, z$ between p and p_{k-1} p_{k} is right (on or left, respectively) of $p \bar{p}$
$\Longrightarrow p \bar{p}$ ($p p_{k}$, respectively) is a final line through p.

Minimizing a Sum of Euclidean Norms

Final Line and Orienting Line

$p, q \in Q(a) \backslash\left\{p_{k}\right\}$ such that q between p and p_{k-1}. z is on or right of $\overrightarrow{p q} \forall z \in Q(a)$ between p and p_{k},
$\Longrightarrow p q$ is an orienting line through p.

Exact Algorithm

(1)).

1. Begin at p_{m}. Set $I=1$. Then, $q_{1}=p_{m}$.
2. Consider q_{l}.

If there is a final line through q_{l} go to 4 else, there is an orienting line through q_{l}, go to 3 .

Exact solution of (1) consists of parts of orienting lines and final lines.

We now determine $Q(a)=Q^{R}\left(t^{*}\right)$ (a part of solution of Problem

Exact Algorithm

 (1)).1. Begin at p_{m}. Set $I=1$. Then, $q_{1}=p_{m}$.
2. Consider q_{l}.

If there is a final line through q_{l} go to 4 else, there is an orienting line through q_{l}, go to 3 .

Exact solution of
(1) consists of parts of orienting lines and final lines.

We now determine $Q(a)=Q^{R}\left(t^{*}\right)$ (a part of solution of Problem

3. Let $q_{I} p_{k_{l}^{*}}$ be an orienting line with $p_{k_{1}^{*}}$ as its transfer point. Then, $p_{k_{l}^{*}} \in Q^{R}\left(t^{*}\right)$. Set $q_{I+1}=p_{k_{l}^{*}}$ and $I=I+1$, go to 2 .
4. Let q / q be the final line, where $q \in \overrightarrow{p_{k}}$. Then $Q^{R}\left(t^{*}\right)$ includes $\left\{q_{1}, \ldots, q_{l}, q_{\underline{\underline{E}}}\right\}$.

Exact Algorithm

We now determine $Q(a)=Q^{R}\left(t^{*}\right)$ (a part of solution of Problem (1)).

1. Begin at p_{m}. Set $l=1$. Then, $q_{1}=p_{m}$.
2. Consider q_{l}.

If there is a final line through q_{l} go to 4 else, there is an orienting line through q_{l}, go to 3 .

Exact solution of
(1) consists of parts of orienting lines and final lines.
3. Let $q_{I} p_{k_{1}^{*}}$ be an orienting line with $p_{k_{1}^{*}}$ as its transfer point. Then, $p_{k_{l}^{*}} \in Q^{R}\left(t^{*}\right)$. Set $q_{I+1}=p_{k_{l}^{*}}$ and $I=I+1$, go to 2 .
4. Let $q_{l} q$ be the final line, where $q \in \overrightarrow{p_{k}}$. Then $Q^{R}\left(t^{*}\right)$ includes $\left\{q_{1}, \ldots, q_{l}, q_{\underline{\underline{2}}}\right.$.

Exact Algorithm

We now determine $Q(a)=Q^{R}\left(t^{*}\right)$ (a part of solution of Problem (1)).

1. Begin at p_{m}. Set $l=1$. Then, $q_{1}=p_{m}$.
2. Consider q_{l}.

If there is a final line through q_{l} go to 4 else, there is an orienting line through q_{l}, go to 3 .

Exact solution of
(1) consists of parts of orienting lines and final lines.
3. Let $q_{I} p_{k_{1}^{*}}$ be an orienting line with $p_{k_{1}^{*}}$ as its transfer point. Then, $p_{k_{1}^{*}} \in Q^{R}\left(t^{*}\right)$. Set $q_{I+1}=p_{k_{l}^{*}}$ and $I=I+1$, go to 2 .
4. Let $q_{l} q$ be the final line, where $q \in \overrightarrow{p_{k}}$. Then $Q^{R}\left(t^{*}\right)$ includes $\left\{q_{1}, \ldots, q_{l}, q_{\underline{z}}\right\}$.

Exact Algorithm

We now determine $Q(a)=Q^{R}\left(t^{*}\right)$ (a part of solution of Problem (1)).

1. Begin at p_{m}. Set $I=1$. Then, $q_{1}=p_{m}$.
2. Consider q_{l}.

If there is a final line through q_{l} go to 4 else, there is an orienting line through q_{l}, go to 3 .

Exact solution of
(1) consists of parts of orienting lines and final lines.
3. Let $q_{I} p_{k_{1}^{*}}$ be an orienting line with $p_{k_{1}^{*}}$ as its transfer point. Then, $p_{k_{1}^{*}} \in Q^{R}\left(t^{*}\right)$. Set $q_{I+1}=p_{k_{l}^{*}}$ and $I=I+1$, go to 2 .
4. Let $q_{l} q$ be the final line, where $q \in \overrightarrow{p_{k}}$. Then $Q^{R}\left(t^{*}\right)$ includes $\left\{q_{1}, \ldots, q_{l}, q_{\underline{\underline{2}}}\right.$.

Exact Algorithm

We now determine $Q(a)=Q^{R}\left(t^{*}\right)$ (a part of solution of Problem (1)).

1. Begin at p_{m}. Set $l=1$. Then, $q_{1}=p_{m}$.
2. Consider q_{l}.

If there is a final line through q_{l} go to 4 else, there is an orienting line through q_{l}, go to 3.

Exact solution of
(1) consists of parts of orienting lines and final lines.
3. Let $q_{I} p_{k_{1}^{*}}$ be an orienting line with $p_{k_{1}^{*}}$ as its transfer point. Then, $p_{k_{l}^{*}} \in Q^{R}\left(t^{*}\right)$. Set $q_{I+1}=p_{k_{l}^{*}}$ and $I=I+1$, go to 2 .
4. Let $q_{l} q$ be the final line, where $q \in \overrightarrow{p_{k}}$. Then $Q^{R}\left(t^{*}\right)$ includes $\left\{q_{1}, \ldots, q_{l}, q_{\underline{\underline{2}}}\right.$.

Exact Algorithm

We now determine $Q(a)=Q^{R}\left(t^{*}\right)$ (a part of solution of Problem (1)).

1. Begin at p_{m}. Set $I=1$. Then, $q_{1}=p_{m}$.
2. Consider q_{l}.

If there is a final line through q_{l} go to 4 else, there is an orienting line through q_{l}, go to 3.

Exact solution of
(1) consists of parts of orienting lines and final lines.
3. Let $q_{I} p_{k_{1}^{*}}$ be an orienting line with $p_{k_{1}^{*}}$ as its transfer point. Then, $p_{k_{1}^{*}} \in Q^{R}\left(t^{*}\right)$. Set $q_{I+1}=p_{k_{l}^{*}}$ and $I=I+1$, go to 2 .
4. Let $q_{l} q$ be the final line, where $q \in \overrightarrow{p_{k}}$. Then $Q^{R}\left(t^{*}\right)$ includes $\left\{q_{1}, \ldots, q_{l}, q_{\underline{\underline{2}}}\right.$.

Exact Algorithm

We now determine $Q(a)=Q^{R}\left(t^{*}\right)$ (a part of solution of Problem (1)).

1. Begin at p_{m}. Set $l=1$. Then, $q_{1}=p_{m}$.
2. Consider q_{l}.

If there is a final line through q_{l} go to 4 else, there is an orienting line through q_{l}, go to 3 .

Exact solution of
(1) consists of parts of orienting lines and final lines.
3. Let $q_{I} p_{k_{l}^{*}}$ be an orienting line with $p_{k_{l}^{*}}$ as its transfer point. Then, $p_{k_{l}^{*}} \in Q^{R}\left(t^{*}\right)$. Set $q_{I+1}=p_{k_{l}^{*}}$ and $I=I+1$, go to 2 .
4. Let $q_{l} q$ be the final line, where $q \in \overrightarrow{p_{k}}$. Then $Q^{R}\left(t^{*}\right)$ includes $\left\{q_{1}, \ldots, q_{l}, q_{\underline{\underline{2}}}\right.$.

Exact Algorithm

We now determine $Q(a)=Q^{R}\left(t^{*}\right)$ (a part of solution of Problem (1)).

1. Begin at p_{m}. Set $l=1$. Then, $q_{1}=p_{m}$.
2. Consider q_{l}.

If there is a final line through q_{l} go to 4 else, there is an orienting line through q_{l}, go to 3 .

Exact solution of
(1) consists of parts of orienting lines and final lines.
3. Let $q_{I} p_{k_{l}^{*}}$ be an orienting line with $p_{k_{l}^{*}}$ as its transfer point. Then, $p_{k_{l}^{*}} \in Q^{R}\left(t^{*}\right)$. Set $q_{I+1}=p_{k_{l}^{*}}$ and $I=I+1$, go to 2 .
4. Let $q_{l} q$ be the final line, where $q \in \overrightarrow{p_{k}}$. Then $Q^{R}\left(t^{*}\right)$ includes $\left\{q_{1}, \ldots, q_{l}, q_{\underline{z}}\right\}$.

Exact Algorithm

We now determine $Q(a)=Q^{R}\left(t^{*}\right)$ (a part of solution of Problem (1)).

1. Begin at p_{m}. Set $l=1$. Then, $q_{1}=p_{m}$.
2. Consider q_{l}.

If there is a final line through q_{l} go to 4 else, there is an orienting line through q_{l}, go to 3 .

Exact solution of
(1) consists of parts of orienting lines and final lines.
3. Let $q_{I} p_{k_{l}^{*}}$ be an orienting line with $p_{k_{l}^{*}}$ as its transfer point. Then, $p_{k_{l}^{*}} \in Q^{R}\left(t^{*}\right)$. Set $q_{I+1}=p_{k_{l}^{*}}$ and $I=I+1$, go to 2 .
4. Let $q_{l} q$ be the final line, where $q \in \overrightarrow{p_{k}}$. Then $Q^{R}\left(t^{*}\right)$ includes $\left\{q_{1}, \ldots, q_{l}, q_{\underline{z}}\right\}$.

Exact Algorithm

We now determine $Q(a)=Q^{R}\left(t^{*}\right)$ (a part of solution of Problem (1)).

1. Begin at p_{m}. Set $I=1$. Then, $q_{1}=p_{m}$.
2. Consider q_{l}.

If there is a final line through q_{l} go to 4 else, there is an orienting line through q_{l}, go to 3 .

Exact solution of
(1) consists of parts of orienting lines and final lines.
3. Let $q_{I} p_{k_{1}^{*}}$ be an orienting line with $p_{k_{1}^{*}}$ as its transfer point. Then, $p_{k_{l}^{*}} \in Q^{R}\left(t^{*}\right)$. Set $q_{I+1}=p_{k_{l}^{*}}$ and $I=I+1$, go to 2 .
4. Let $q_{l} q$ be the final line, where $q \in \overrightarrow{p_{k}}$. Then $Q^{R}\left(t^{*}\right)$ includes $\left\{q_{1}, \ldots, q_{l}, q_{\underline{\underline{2}}}\right.$.

Exact Algorithm

We now determine $Q(a)=Q^{R}\left(t^{*}\right)$ (a part of solution of Problem (1)).

1. Begin at p_{m}. Set $I=1$. Then, $q_{1}=p_{m}$.
2. Consider q_{l}.

If there is a final line through q_{l} go to 4 else, there is an orienting line through q_{l}, go to 3 .

Exact solution of
(1) consists of parts of orienting lines and final lines.
3. Let $q_{I} p_{k_{1}^{*}}$ be an orienting line with $p_{k_{1}^{*}}$ as its transfer point. Then, $p_{k_{l}^{*}} \in Q^{R}\left(t^{*}\right)$. Set $q_{I+1}=p_{k_{l}^{*}}$ and $I=I+1$, go to 2 .
4. Let $q_{l} q$ be the final line, where $q \in \overrightarrow{p_{k}}$. Then $Q^{R}\left(t^{*}\right)$ includes $\left\{q_{1}, \ldots, q_{l}, q_{\underline{\underline{2}}}\right.$.

Exact Algorithm

We now determine $Q(a)=Q^{R}\left(t^{*}\right)$ (a part of solution of Problem (1)).

1. Begin at p_{m}. Set $I=1$. Then, $q_{1}=p_{m}$.
2. Consider q_{l}.

If there is a final line through q_{l} go to 4 else, there is an orienting line through q_{l}, go to 3.

Exact solution of
(1) consists of parts of orienting lines and final lines.
3. Let $q_{I} p_{k_{1}^{*}}$ be an orienting line with $p_{k_{1}^{*}}$ as its transfer point. Then, $p_{k_{1}^{*}} \in Q^{R}\left(t^{*}\right)$. Set $q_{I+1}=p_{k_{l}^{*}}$ and $I=I+1$, go to 2 .
4. Let $q_{l} q$ be the final line, where $q \in \overrightarrow{p_{k}}$. Then $Q^{R}\left(t^{*}\right)$ includes $\left\{q_{1}, \ldots, q_{l}, q_{\underline{\underline{2}}}\right.$.

Minimizing a Sum of Euclidean Norms

Restricted Areas

It helps to determine quickly if $q_{I} p$ is orienting line or not:

0

Application Example

$$
\begin{equation*}
\inf _{t} \mathcal{F}(t) \tag{2}
\end{equation*}
$$

where

$$
\begin{aligned}
& \mathcal{F}(t)=\sqrt{\left(2 t_{7}-30 t_{6}\right)^{2}+36 t_{6}^{2}}+\sqrt{\left(30 t_{6}-53 t_{5}\right)^{2}+\left(6 t_{6}-16 t_{5}\right)^{2}} \\
& \quad+\sqrt{\left(53 t_{5}-4 t_{4}\right)^{2}+\left(16 t_{5}-5 t_{4}\right)^{2}}+\sqrt{\left(4 t_{4}-3 t_{3}\right)^{2}+\left(5 t_{4}-7 t_{3}\right)^{2}} \\
& \quad+\sqrt{\left(3 t_{3}-t_{2}\right)^{2}+\left(7 t_{3}-21 t_{2}\right)^{2}}+\sqrt{\left(-5 t_{1}-t_{2}\right)^{2}+\left(5 t_{1}-21 t_{2}\right)^{2}} \\
& \text { and } t_{7} \geq a_{7}=1, t_{6} \geq a_{6}=1.5, t_{5} \geq a_{5}=1, t_{4} \geq a_{4}=14, t_{3} \geq \\
& a_{3}=3, t_{2} \geq a_{2}=5 \text { and } t_{1} \geq a_{1}=3.5 .
\end{aligned}
$$

Application Example

	Approximation algorithms	Our exact algorithm
	(2) written as a second order cone program -interior-point methods	-Final lines, orienting lines -Restricted area
$\mathcal{F}\left(t^{*}\right)$	≈ 209.636414	$=56 / 5+1512 / 265+2814 / 53$
		$+(\sqrt{646594}+\sqrt{1530400}) / 33$
t_{1}^{*}	≈ 9.99998	$+55 \sqrt{2}$
t_{2}^{*}	≈ 5	$=10$
t_{3}^{*}	≈ 11.9829	$=5$
t_{4}^{*}	≈ 14	$=395 / 33$
t_{5}^{*}	≈ 1.0566	$=14$
t_{*}^{*}	≈ 1.8666	$=56 / 53$
t_{7}^{*}	≈ 28.0002	$=28 / 15$
		$=28$

Conclusion

Conclusion

- Minimizing a sum of Euclidean norms in 2D (in Convex Optimization) \Longrightarrow A 2D shortest path problem (1) (in Computational Geometry)

Conclusion

- Minimizing a sum of Euclidean norms in 2D (in Convex Optimization) \Longrightarrow A 2D shortest path problem (1) (in Computational Geometry)
- Idea of the method of orienting curves (for solving some optimal control problems) is applied for solving (1) to get exact solution. \Longrightarrow method of orienting lines.

Conclusion

- Minimizing a sum of Euclidean norms in 2D (in Convex Optimization) \Longrightarrow A 2D shortest path problem (1) (in Computational Geometry)
- Idea of the method of orienting curves (for solving some optimal control problems) is applied for solving (1) to get exact solution. \Longrightarrow method of orienting lines.
This method does not rely on triangulation and graph tools.

Conclusion

- Minimizing a sum of Euclidean norms in 2D (in Convex Optimization) \Longrightarrow A 2D shortest path problem (1) (in Computational Geometry)
- Idea of the method of orienting curves (for solving some optimal control problems) is applied for solving (1) to get exact solution. \Longrightarrow method of orienting lines. This method does not rely on triangulation and graph tools.
- Open question: Can minimizing a sum of Euclidean norms in higher dimmensions with nonlinear p_{i} be solved exactly in the same manner? \Longrightarrow Exact solution consists of parts of orienting Xs and final Xs???

THANK YOU FOR YOUR ATTENTION!

Phan Thanh An ${ }^{1,2}$, Dinh Thanh Giang ${ }^{2}$, and Le Hong Trang ${ }^{2,2}$ Method of Orienting Lines for Minimizing a Sum of Euclidean

THANK YOU FOR YOUR ATTENTION!

Phan Thanh An ${ }^{1,2}$, Dinh Thanh Giang ${ }^{2}$, and Le Hong Trang ${ }^{2,2}$ Method of Orienting Lines for Minimizing a Sum of Euclidean

