Formalisation of Algebraic Topology: a report

Julio Rubio

Universidad de La Rioja Departamento de Matemáticas y Computación

MAP 2012

Konstanz (Germany), September 17th-21th, 2012

Partially supported by Ministerio de Educación y Ciencia, project MTM2009-13842-C02-01, and by European Commission FP7, STREP project ForMath, n. 243847.

Formalizing mathematics: the European Project ForMath

- European Commission FP7, STREP project ForMath: 2010-2013
- Objective: formalized libraries for mathematical algorithms.
- Four nodes:
 - ► Gothenburg University: Thierry Coquand, leader.
 - Radboud University.
 - INRIA.
 - Universidad de La Rioja.

Status of ForMath

- Four Work Packages:
 - Infrastructure to formalize mathematics in constructive type theory.
 - SSReflect extension of Coq.
 Gonthier's library created for the Four Color Theorem.
 Now extended and applied to simple finite group classification.
 - $\star\,$ Mixing deduction and computation, Big-Op library, \ldots
 - Linear Algebra library.
 - * Verified and efficient matrix manipulation.
 - * Coherent and strongly discrete rings in type theory.
 - Real numbers and differential equations.
 - ★ Verified and efficient reals in Coq.
 - * Numerical integration, Simpson's rule, Newton method, ...
 - ► Algebraic topology and...(medical) image processing.
- Why formalizing mathematics?

Summary

- Computer-based mathematical error detection.
- Essential building blocks.
 - Eilenberg-Zilber (EZ) theorem.
 - Basic Perturbation Lemma (BPL).
- Formalisation of the EZ theorem.
- Formalisation of the BPL.
- Discrete vector fields.
- Biomedical image processing.
- Formalisation of homological computing.
- Interoperability.
- Persistent homology.
- Another mathematical error.
- Conclusions and further work.

A published "theorem"

Theorem 5.4: Let
$$A_4$$
 be the 4-th alternating group.
Then $\pi_4(\Sigma K(A_4, 1)) = \mathbb{Z}_4$

"On homotopy groups of the suspended classifying spaces". Algebraic and Geometric Topology 10 (2010) 565-625.

- $A_4 = 4$ -th alternating group.
- $K(A_4, 1) = Eilenberg-MacLane space.$
- $\Sigma =$ Suspension.
- $\pi_4() = 4$ -th homotopy group.
- $\mathbb{Z}_4 = cyclic \text{ group with 4 elements.}$

A computer calculation

After some previous definitions, we define in Kenzo the alternate group A_4 :

```
> (setf A4 (group1 (tcc rsltn))) ; rsltn = resolution
[K1 Group]
```

```
It is a group with effective homology (Ana Romero's programs):
> (setf (slot-value A4 'resolution) rsltn)
[K10 Reduction K2 => K5]
```

```
We apply the classifying construction, obtaining K(A_4, 1):
```

```
> (setf k-A4-1 (k-g-1 A4))
[K11 Simplicial-Group]
```

We apply the suspension construction, obtaining $\Sigma K(A_4, 1)$:

```
> (setf s-k-A4-1 (suspension k-A4-1))
[K23 Simplicial-Set]
```

And finally we compute the controversial homotopy group:

```
> (homotopy s-k-A4-1 4)
Homotopy in dimension 4 :
   Component Z/4Z
   Component Z/3Z
```

Anatomy of a calculation

- In this particular case, Kenzo was right and the mathematical text wrong.
- In general?
- Increasing trust: formal verification of (part of) (the algorithms supporting) the programs.

•
$$\pi_4(\Sigma K(A_4,1)) = H_4(K_4).$$

- A homotopy group is computed as a homology group of an space K_4 .
- K_4 is the total space of a fibration: $K(\mathbb{Z}_6,2) \to K_4 \to K_3$.

• (
$$\mathbb{Z}_6 = H_3(K_3) = \pi_3(\Sigma K(A_4, 1)).$$
)

- $K_4 = K(\mathbb{Z}_6, 2) \times_{\tau} K_3$ (twisted Cartesian product).
- The (effective) homology of $K(\mathbb{Z}_6, 2)$ and K_3 are known.
- An effective version of the Serre spectral sequence is needed.

Reductions

- Given two chain complexes $C := \{(C_n, d_n)\}_{n \in \mathbb{Z}}$ and $C' := \{(C', d')\}_{n \in \mathbb{Z}}$ and $f' \in C'$
 - $C' := \{(C'_n, d'_n)\}_{n \in \mathbb{Z}}$ a *reduction* between them is (f, g, h) where
 - $f: C \rightarrow C'$ and $g: C' \rightarrow C$ are chain morphisms
 - ▶ and *h* is a family of homomorphisms (called *homotopy operator*) $h_n: C_n \to C_{n+1}.$

satisfying

- f o g = 1
 d o h + h o d + g o f = 1
 f o h = 0
 h o g = 0
 h o h = 0
- If $(f, g, h) : C \Longrightarrow C'$ is a reduction, then $H(C) \cong H(C')$.
- Theorem: From $A \Longrightarrow A'$ and $B \Longrightarrow B'$, an algorithm constructs $A \otimes B \Longrightarrow A' \otimes B'$.
- Corollary: If A and B are with effective homology, then $A \otimes B$ is with effective homology.

Essential building blocks

- Eilenberg-Zilber Theorem: $C(F \times B) \Longrightarrow C(F) \otimes C(B)$.
- It is the case of a trivial fibration: $F \rightarrow F \times B \rightarrow B$.
- What about the general (twisted) case? F → F ×_τ B → B.

Then?

- Given a chain complex (C, d), a perturbation for it is a family ρ of group homomorphisms ρ_n: C_n → C_{n-1} such that (C, d + ρ) is again a chain complex (that is to say: (d + ρ) ∘ (d + ρ) = 0).
- Basic Perturbation Lemma: Let (f, g, h) : (C, d) ⇒ (C', d') be a reduction and be ρ a perturbation for (C, d) which are locally nilpotent. Then there exists a reduction
 (f_∞, g_∞, h_∞) : (C, d + ρ) ⇒ (C', d'_∞).

Putting all together

- Given a fibration $F \to F \times_{\tau} B \to B$ where
 - F and B are with effective homology (known reductions C(F) ⇒ HF and C(B) ⇒ HB) and
 - *B* is simply connected.
- EZ application: $C(F \times B) \Longrightarrow C(F) \otimes C(B)$.
- BPL application: $C(F \times_{\tau} B) \Longrightarrow C(F) \otimes_t C(B)$.
- Tensor product application: $C(F) \otimes C(B) \Longrightarrow HF \otimes HB$.
- BPL application (*B* simply connected): $C(F) \otimes_t C(B) \Longrightarrow HF \otimes_{t'} HB$
- Composing it all: $C(F \times_{\tau} B) \Longrightarrow HF \otimes_{t'} HB$.
- Conclusion: The total space $F \times_{\tau} B$ is with effective homology.

Statement of the EZ theorem

•
$$(f, g, h) : C(F \times B) \Longrightarrow C(F) \otimes C(B)$$

• $f = AW$ (Alexander-Whitney)
 $AW(x_n, y_n) = \sum_{i=0}^n \partial_{i+1} \dots \partial_n x_n \otimes \partial_0 \dots \partial_{i-1} y_n$
• $g = EML$ (Eilenberg-MacLane)
 $EML(x_p \otimes y_q) =$
 $\sum_{(\alpha,\beta) \in \{(p,q)\text{-shuffles}\}} (-1)^{sg(\alpha,\beta)} (\eta_{\beta_q} \dots \eta_{\beta_1} x_p, \eta_{\alpha_p} \dots \eta_{\alpha_1} y_q)$
• $h = SHI$ (Shih)
 $SHI(x_n, y_n) =$
 $\sum (-1)^{n-p-q+sg(\alpha,\beta)} (\eta_{\beta_q+n-p-q} \dots \eta_{\beta_1+n-p-q} \eta_{n-p-q-1} \partial_{n-q+1} \dots \partial_n x_n,$

$$\eta_{\alpha_{p+1}+n-p-q}\ldots\eta_{\alpha_1+n-p-q}\partial_{n-p-q}\ldots\partial_{n-q-1}y_n).$$

- where a (p, q)-shuffle $(\alpha, \beta) = (\alpha_1, \ldots, \alpha_p, \beta_1, \ldots, \beta_q)$ is a permutation of the set $\{0, 1, \ldots, p + q 1\}$ such that $\alpha_i < \alpha_{i+1}$ and $\beta_j < \beta_{j+1}$.
- EZ is responsible of much of the exponential behaviour of Kenzo.
- It is essentially unique (so unavoidable).
- The formulas are very well-structured and of combinatorial nature.

Formalisation of the EZ theorem

- A proof purely based on induction + rewriting.
- The ACL2 theorem prover is the right tool for the task.
- Main conceptual tool: simplicial polynomials.
- It allows one to enhance ACL2 with *algebraic rewriting*.
- Already used in the proof of the Normalisation Theorem.

• $C^D(K) \Longrightarrow C(K)$.

- L. Lambán, F. J. Martín-Mateos, J. R., J. L. Ruiz-Reina.
 "Formalization of a normalization theorem in simplicial topology". Annals of Mathematics and Artificial Intelligence 64 (2012) 1-37.
- EZ formalisation by the same team, with proving effort
 - EZ: 13000 lines.
 - Normalisation: 4500 lines.
 - Common infrastructure: 6000 lines.

Statement of the BPL

- Let (f, g, h): $(D, d_D) \Longrightarrow (C, d_C)$ be a reduction and $\rho_D \colon D \to D$ a perturbation of the differential d_D satisfying the local nilpotency condition with respect to the reduction (f, g, h). Then, a new reduction $(f', g', h') \colon (D', d_{D'}) \Longrightarrow (C', d_{C'})$ can be obtained, where the underlying graded groups D and D' (resp. C and C') are the same, but the differentials are perturbed: $d_{D'} = d_D + \rho_D$, $d_{C'} = d_C + \rho_C$, where $\rho_C = f \rho_D \psi g$; $f' = f \phi$; $g' = \psi g$; $h' = h \phi$, where $\phi = \sum_{i=0}^{\infty} (-1)^i (\rho_D h)^i$, and $\psi = \sum_{i=0}^{\infty} (-1)^i (h \rho_D)^i$.
- Note the role of the series.
- The graded groups are general (with infinitely many generators, for instance).
- No combinatorial approach possible.

Formalisation of the BPL

- Isabelle/HOL formalisation:
 - J. Aransay, C. Ballarin, J. R.
 "A mechanized proof of the Basic Perturbation Lemma". Journal of Automated Reasoning 40 (2008) 271-293.
 - ► General statement. Ungraded case. General groups (not effective).
- Coq formalisation:
 - C. Domínguez, J. R.
 "Effective homology of bicomplexes, formalized in Coq". Theoretical Computer Science 412 (2011) 962-970.
 - Bicomplexes only. Graded case. Locally effective and effective groups.
- SSReflect formalisation:
 - C. Domínguez, J. Heras, M. Poza, J. R.
 - General statement. Graded case. Only finitely generated groups.
 - Based on a shorter and brand new proof by:

A. Romero, F. Sergeraert. "Discrete Vector Fields and Fundamental Algebraic Topology". ArXiv 2010.

Discrete Vector Fields

• Given a chain complex C_* and a dvf, V over C_*

• $C_* \Longrightarrow C_*^c$

• generators of C_*^c are *critical cells* of C_*

(

$$0 \leftarrow \mathbb{Z}^{16} \xleftarrow{d_1}{\mathcal{Z}} \mathbb{Z}^{32} \xleftarrow{d_2}{\mathcal{Z}} \mathbb{Z}^{16} \leftarrow 0$$

 \downarrow
 $0 \leftarrow \mathbb{Z} \xleftarrow{\widehat{d_1}}{\mathcal{Z}} \mathbb{Z} \xleftarrow{\widehat{d_2}}{0} \leftarrow 0$

DVF Reduction Theorem

- Let C_{*} = (C_p, d_p)_{p∈Z} a free chain complex with distinguished Z-basis β_p ⊂ C_p. A discrete vector field V on C_{*} is a collection of pairs V = {(σ_i; τ_i)}_{i∈I} satisfying the conditions:
 - Every σ_i is some element of β_p , in which case $\tau_i \in \beta_{p+1}$.
 - Every component σ_i is a *regular face* of the corresponding τ_i .
 - ▶ Each generator (*cell*) of C_{*} appears at most once in V.
- DVF Reduction Theorem: Let C_{*} = (C_p, d_p)_{p∈Z} be a free chain complex and V = {(σ_i; τ_i)}_{i∈I} be an admissible discrete vector field on C_{*}. Then the vector field V defines a canonical reduction (f, g, h) : (C_p, d_p) ⇒ (C^c_p, d'_p) where C^c_p = Z[β^c_p] is the free Z-module generated by the critical p-cells.
- One proof by Romero and Sergeraert uses the BPL.
- Formalised in: J. Heras, M. Poza, J. R. "Verifying an Algorithm Computing Discrete Vector Fields for Digital Imaging". Calculemus 2012, LNCS 7362 (2012) 216-230.

Biomedical image processing

- Constraints in the previous formalisation:
 - Computing over \mathbb{Z}_2 .
 - Only finitely generated groups (finite dimensional vector spaces, matrices, SSReflect).
- Application: counting synapses.
 - *Synapses* are the points of connection between neurons.
 - *Relevance*: Computational capabilities of the brain.
 - Procedures to modify the synaptic density may be an important asset in the treatment of neurological diseases.
 - An automated and reliable method is necessary.

Counting Synapses

Computing Homology Groups

- Counting synapses:
 - Counting connected components.
 - Computing a homology group: H_0 .
- It is a matter of *matrix diagonalisation*.
- Formalisation of Smith Normal Form:
 - C. Cohen, M. Dénès, A. Mörtberg, V. Siles.

"Smith Normal Form and executable rank for matrices".

http://wiki.portal.chalmers.se/cse/pmwiki.php/ForMath/

- Formalisation of homological computing:
 - J. Heras, M. Dénès, G. Mata, A. Mörtberg, M. Poza, V. Siles. "Towards a certified computation of homology groups for digital images". CTIC 2012, LNCS 7309 (2012) 49-57.
- Results with biomedical images:
 - Without DVF reduction procedure:
 - $\star\,$ Coq is not able to compute homology of this kind of images.
 - After reduction procedure:
 - $\star\,$ Coq computes in just 25 seconds.

Interoperability

- Could different proof assistants cooperate in a same proof?
- Matrix computing: essentially a first-order problem.
- Formalisation in Isabelle/HOL: Hermite form (J. Aransay, J. Divasón).
- Could the specification be translated automatically to ACL2?
- Interlingua: OCL, the constraint language for UML.
- Largely based in XML manipulation and already-made tools (Eclipse tools, as Ecore).
- Joint work: J. Aransay, J. Divasón, J. Heras, AL Rubio, J. R.

Persistent Homology

- Another biological problem: neuron recognition (where counting synapses).
- Topological tool: persistent homology.
- Formalisation in SSReflect:
 J. Heras, T. Coquand, A. Mörtberg, V. Siles.
 "Computing Persistent Homology within Coq/SSReflect".
- To define persistent homology a *filtration* of a simplicial complex is required.
- From the same data, a spectral sequence can be defined.
- Ana Romero made Kenzo compute spectral sequences...
- ... and then persistent homology.

Another published "theorem"

Spectral Sequence Theorem: $\sum_{p=1}^{n} \operatorname{rank} E_{p,q}^{r} = \operatorname{card} \{ a \in Dgm_{p+q}(f) | pers(a) \ge r \}$

"Computational Topology". Americal Mathematical Society, 2010.

- Ana Romero (Kenzo) found a discrepancy.
- The formula was corrected.
- Another more accurate formula was given.
- Computer Algebra is going beyond...
- ... more formal verification is needed.

Conclusions and further work

- Conclusion... of the ForMath european project.
 - Infrastructure to formalize mathematics in constructive type theory.
 - Linear Algebra library.
 - Real numbers and differential equations.
 - Algebraic topology.
 - * Representation of simplicial complexes.
 - * Certified computation of homology groups.
 - * Representation of the Basic Perturbation Lemma.
 - ★ Integration with other proofs systems.
 - ★ Applications to medical imagery.
- Future:
 - From certified computing to *efficient* certified computing.
 - More applications.
 - * More Topology in biomedical applications.
 - ★ More verification in Topology.