Formalisation of Algebraic Topology: a report

Julio Rubio
Universidad de La Rioja Departamento de Matemáticas y Computación

MAP 2012

Konstanz (Germany), September 17th-21th, 2012

Partially supported by Ministerio de Educación y Ciencia, project MTM2009-13842-C02-01, and by European Commission FP7, STREP project ForMath, n. 243847.

Formalizing mathematics: the European Project ForMath

- European Commission FP7, STREP project ForMath: 2010-2013
- Objective: formalized libraries for mathematical algorithms.
- Four nodes:
- Gothenburg University: Thierry Coquand, leader.
- Radboud University.
- INRIA.
- Universidad de La Rioja.

Status of ForMath

- Four Work Packages:
- Infrastructure to formalize mathematics in constructive type theory.
* SSReflect extension of Coq.

Gonthier's library created for the Four Color Theorem.
Now extended and applied to simple finite group classification.

* Mixing deduction and computation, Big-Op library, ...
- Linear Algebra library.
\star Verified and efficient matrix manipulation.
\star Coherent and strongly discrete rings in type theory.
- Real numbers and differential equations.
\star Verified and efficient reals in Coq.
^ Numerical integration, Simpson's rule, Newton method, ...
- Algebraic topology and... (medical) image processing.
- Why formalizing mathematics?

Summary

- Computer-based mathematical error detection.
- Essential building blocks.
- Eilenberg-Zilber (EZ) theorem.
- Basic Perturbation Lemma (BPL).
- Formalisation of the EZ theorem.
- Formalisation of the BPL.
- Discrete vector fields.
- Biomedical image processing.
- Formalisation of homological computing.
- Interoperability.
- Persistent homology.
- Another mathematical error.
- Conclusions and further work.

A published "theorem"

Theorem 5.4: Let A_{4} be the 4-th alternating group.
Then $\pi_{4}\left(\Sigma K\left(A_{4}, 1\right)\right)=\mathbb{Z}_{4}$
"On homotopy groups of the suspended classifying spaces". Algebraic and Geometric Topology 10 (2010) 565-625.

- $A_{4}=4$-th alternating group.
- $K\left(A_{4}, 1\right)=$ Eilenberg-MacLane space.
- $\Sigma=$ Suspension.
- $\pi_{4}()=4$-th homotopy group.
- $\mathbb{Z}_{4}=$ cyclic group with 4 elements.

A computer calculation

After some previous definitions, we define in Kenzo the alternate group A_{4} :

```
> (setf A4 (group1 (tcc rsltn))) ; rsltn = resolution
```

[K1 Group]

It is a group with effective homology (Ana Romero's programs):

```
> (setf (slot-value A4 'resolution) rsltn)
```

[K10 Reduction K2 => K5]

We apply the classifying construction, obtaining $K\left(A_{4}, 1\right)$:

```
> (setf k-A4-1 (k-g-1 A4))
```

[K11 Simplicial-Group]

We apply the suspension construction, obtaining $\Sigma K\left(A_{4}, 1\right)$:
$>($ setf $\mathrm{s}-\mathrm{k}-\mathrm{A} 4-1$ (suspension $\mathrm{k}-\mathrm{A} 4-1$))
[K23 Simplicial-Set]
And finally we compute the controversial homotopy group:

```
> (homotopy s-k-A4-1 4)
Homotopy in dimension 4 :
    Component Z/4Z
    Component Z/3Z
```


Anatomy of a calculation

- In this particular case, Kenzo was right and the mathematical text wrong.
- In general?
- Increasing trust: formal verification of (part of) (the algorithms supporting) the programs.
- $\pi_{4}\left(\Sigma K\left(A_{4}, 1\right)\right)=H_{4}\left(K_{4}\right)$.
- A homotopy group is computed as a homology group of an space K_{4}.
- K_{4} is the total space of a fibration: $K\left(\mathbb{Z}_{6}, 2\right) \rightarrow K_{4} \rightarrow K_{3}$.
- $\left(\mathbb{Z}_{6}=H_{3}\left(K_{3}\right)=\pi_{3}\left(\Sigma K\left(A_{4}, 1\right)\right)\right.$. $)$
- $K_{4}=K\left(\mathbb{Z}_{6}, 2\right) \times{ }_{\tau} K_{3}$ (twisted Cartesian product).
- The (effective) homology of $K\left(\mathbb{Z}_{6}, 2\right)$ and K_{3} are known.
- An effective version of the Serre spectral sequence is needed.

Reductions

- Given two chain complexes $C:=\left\{\left(C_{n}, d_{n}\right)\right\}_{n \in \mathbb{Z}}$ and $C^{\prime}:=\left\{\left(C_{n}^{\prime}, d_{n}^{\prime}\right)\right\}_{n \in \mathbb{Z}}$ a reduction between them is (f, g, h) where
- $f: C \rightarrow C^{\prime}$ and $g: C^{\prime} \rightarrow C$ are chain morphisms
- and h is a family of homomorphisms (called homotopy operator) $h_{n}: C_{n} \rightarrow C_{n+1}$.
satisfying
(1) $f \circ g=1$
(2) $d \circ h+h \circ d+g \circ f=1$
(3) $f \circ h=0$
(3) $h \circ g=0$
(6) $h \circ h=0$
- If $(f, g, h): C \Longrightarrow C^{\prime}$ is a reduction, then $H(C) \cong H\left(C^{\prime}\right)$.
- Theorem: From $A \Longrightarrow A^{\prime}$ and $B \Longrightarrow B^{\prime}$, an algorithm constructs $A \otimes B \Longrightarrow A^{\prime} \otimes B^{\prime}$.
- Corollary: If A and B are with effective homology, then $A \otimes B$ is with effective homology.

Essential building blocks

- Eilenberg-Zilber Theorem: $C(F \times B) \Longrightarrow C(F) \otimes C(B)$.
- It is the case of a trivial fibration: $F \rightarrow F \times B \rightarrow B$.
- What about the general (twisted) case? $F \rightarrow F \times{ }_{\tau} B \rightarrow B$.
- Then?
- Given a chain complex (C, d), a perturbation for it is a family ρ of group homomorphisms $\rho_{n}: C_{n} \rightarrow C_{n-1}$ such that $(C, d+\rho)$ is again a chain complex (that is to say: $(d+\rho) \circ(d+\rho)=0)$.
- Basic Perturbation Lemma: Let $(f, g, h):(C, d) \Longrightarrow\left(C^{\prime}, d^{\prime}\right)$ be a reduction and be ρ a perturbation for (C, d) which are locally nilpotent. Then there exists a reduction $\left(f_{\infty}, g_{\infty}, h_{\infty}\right):(C, d+\rho) \Longrightarrow\left(C^{\prime}, d_{\infty}^{\prime}\right)$.

Putting all together

- Given a fibration $F \rightarrow F \times_{\tau} B \rightarrow B$ where
- F and B are with effective homology (known reductions $C(F) \Longrightarrow H F$ and $C(B) \Longrightarrow H B)$ and
- B is simply connected.
- EZ application: $C(F \times B) \Longrightarrow C(F) \otimes C(B)$.
- BPL application: $C\left(F \times_{\tau} B\right) \Longrightarrow C(F) \otimes_{t} C(B)$.
- Tensor product application: $C(F) \otimes C(B) \Longrightarrow H F \otimes H B$.
- BPL application (B simply connected): $C(F) \otimes_{t} C(B) \Longrightarrow H F \otimes_{t^{\prime}} H B$
- Composing it all: $C\left(F \times_{\tau} B\right) \Longrightarrow H F \otimes_{t^{\prime}} H B$.
- Conclusion: The total space $F \times{ }_{\tau} B$ is with effective homology.

Statement of the EZ theorem

- $(f, g, h): C(F \times B) \Longrightarrow C(F) \otimes C(B)$
- $f=A W$ (Alexander-Whitney)

$$
A W\left(x_{n}, y_{n}\right)=\sum_{i=0}^{n} \partial_{i+1} \ldots \partial_{n} x_{n} \otimes \partial_{0} \ldots \partial_{i-1} y_{n}
$$

- $g=E M L$ (Eilenberg-MacLane)

```
\(\operatorname{EML}\left(x_{p} \otimes y_{q}\right)=\)
\(\sum_{(\alpha, \beta) \in\{(p, q) \text {-shuffles }\}}(-1)^{s g(\alpha, \beta)}\left(\eta_{\beta_{q}} \ldots \eta_{\beta_{1}} x_{p}, \eta_{\alpha_{p}} \ldots \eta_{\alpha_{1}} y_{q}\right)\)
```

- $h=$ SHI (Shih)

$$
\begin{aligned}
& \operatorname{SHI}\left(x_{n}, y_{n}\right)= \\
& \sum(-1)^{n-p-q+\operatorname{sg}(\alpha, \beta)}\left(\eta_{\beta_{q}+n-p-q} \ldots \eta_{\beta_{1}+n-p-q} \eta_{n-p-q-1} \partial_{n-q+1} \ldots \partial_{n} x_{n},\right.
\end{aligned}
$$

$$
\left.\eta_{\alpha_{p+1}+n-p-q} \ldots \eta_{\alpha_{1}+n-p-q} \partial_{n-p-q} \ldots \partial_{n-q-1} y_{n}\right) .
$$

- where a (p, q)-shuffle $(\alpha, \beta)=\left(\alpha_{1}, \ldots, \alpha_{p}, \beta_{1}, \ldots, \beta_{q}\right)$ is a permutation of the set $\{0,1, \ldots, p+q-1\}$ such that $\alpha_{i}<\alpha_{i+1}$ and $\beta_{j}<\beta_{j+1}$.
- EZ is responsible of much of the exponential behaviour of Kenzo.
- It is essentially unique (so unavoidable).
- The formulas are very well-structured and of combinatorial nature.

Formalisation of the EZ theorem

- A proof purely based on induction + rewriting.
- The ACL2 theorem prover is the right tool for the task.
- Main conceptual tool: simplicial polynomials.
- It allows one to enhance ACL2 with algebraic rewriting.
- Already used in the proof of the Normalisation Theorem.
- $C^{D}(K) \Longrightarrow C(K)$.
- L. Lambán, F. J. Martín-Mateos, J. R., J. L. Ruiz-Reina.
"Formalization of a normalization theorem in simplicial topology".
Annals of Mathematics and Artificial Intelligence 64 (2012) 1-37.
- EZ formalisation by the same team, with proving effort
- EZ: 13000 lines.
- Normalisation: 4500 lines.
- Common infrastructure: 6000 lines.

Statement of the BPL

- Let $(f, g, h):\left(D, d_{D}\right) \Longrightarrow\left(C, d_{C}\right)$ be a reduction and $\rho_{D}: D \rightarrow D$ a perturbation of the differential d_{D} satisfying the local nilpotency condition with respect to the reduction (f, g, h). Then, a new reduction $\left(f^{\prime}, g^{\prime}, h^{\prime}\right):\left(D^{\prime}, d_{D^{\prime}}\right) \Longrightarrow\left(C^{\prime}, d_{C^{\prime}}\right)$ can be obtained, where the underlying graded groups D and D^{\prime} (resp. C and C^{\prime}) are the same, but the differentials are perturbed: $d_{D^{\prime}}=d_{D}+\rho_{D}$, $d_{C^{\prime}}=d_{C}+\rho_{C}$, where $\rho_{C}=f \rho_{D} \psi g ; f^{\prime}=f \phi ; g^{\prime}=\psi g ; h^{\prime}=h \phi$, where $\phi=\sum_{i=0}^{\infty}(-1)^{i}\left(\rho_{D} h\right)^{i}$, and $\psi=\sum_{i=0}^{\infty}(-1)^{i}\left(h \rho_{D}\right)^{i}$.
- Note the role of the series.
- The graded groups are general (with infinitely many generators, for instance).
- No combinatorial approach possible.

Formalisation of the BPL

- Isabelle/HOL formalisation:
- J. Aransay, C. Ballarin, J. R.
"A mechanized proof of the Basic Perturbation Lemma".
Journal of Automated Reasoning 40 (2008) 271-293.
- General statement. Ungraded case. General groups (not effective).
- Coq formalisation:
- C. Domínguez, J. R.
"Effective homology of bicomplexes, formalized in Coq".
Theoretical Computer Science 412 (2011) 962-970.
- Bicomplexes only. Graded case. Locally effective and effective groups.
- SSReflect formalisation:
- C. Domínguez, J. Heras, M. Poza, J. R.
- General statement. Graded case. Only finitely generated groups.
- Based on a shorter and brand new proof by:
A. Romero, F. Sergeraert. "Discrete Vector Fields and Fundamental Algebraic Topology". ArXiv 2010.

Discrete Vector Fields

- Given a chain complex C_{*} and a $d v f, V$ over C_{*}
- $C_{*} \Longrightarrow C_{*}^{c}$
- generators of C_{*}^{c} are critical cells of C_{*}

$$
\begin{gathered}
0 \leftarrow \mathbb{Z}^{16} \stackrel{d_{1}}{\leftarrow} \mathbb{Z}^{32} \stackrel{d_{2}}{\leftarrow} \mathbb{Z}^{16} \leftarrow 0 \\
0 \leftarrow \mathbb{Z} \stackrel{\widehat{d}_{1}}{\leftarrow} \mathbb{Z} \stackrel{\widehat{d}_{2}}{\leftarrow} 0 \leftarrow 0
\end{gathered}
$$

DVF Reduction Theorem

- Let $C_{*}=\left(C_{p}, d_{p}\right)_{p \in \mathbb{Z}}$ a free chain complex with distinguished \mathbb{Z}-basis $\beta_{p} \subset C_{p}$. A discrete vector field V on C_{*} is a collection of pairs $V=\left\{\left(\sigma_{i} ; \tau_{i}\right)\right\}_{i \in I}$ satisfying the conditions:
- Every σ_{i} is some element of β_{p}, in which case $\tau_{i} \in \beta_{p+1}$.
- Every component σ_{i} is a regular face of the corresponding τ_{i}.
- Each generator (cell) of C_{*} appears at most once in V.
- DVF Reduction Theorem: Let $C_{*}=\left(C_{p}, d_{p}\right)_{p \in \mathbb{Z}}$ be a free chain complex and $V=\left\{\left(\sigma_{i} ; \tau_{i}\right)\right\}_{i \in I}$ be an admissible discrete vector field on C_{*}. Then the vector field V defines a canonical reduction $(f, g, h):\left(C_{p}, d_{p}\right) \Longrightarrow\left(C_{p}^{c}, d_{p}^{\prime}\right)$ where $C_{p}^{c}=\mathbb{Z}\left[\beta_{p}^{c}\right]$ is the free \mathbb{Z}-module generated by the critical p-cells.
- One proof by Romero and Sergeraert uses the BPL.
- Formalised in: J. Heras, M. Poza, J. R. "Verifying an Algorithm Computing Discrete Vector Fields for Digital Imaging". Calculemus 2012, LNCS 7362 (2012) 216-230.

Biomedical image processing

- Constraints in the previous formalisation:
- Computing over \mathbb{Z}_{2}.
- Only finitely generated groups (finite dimensional vector spaces, matrices, SSReflect).
- Application: counting synapses.
- Synapses are the points of connection between neurons.
- Relevance: Computational capabilities of the brain.
- Procedures to modify the synaptic density may be an important asset in the treatment of neurological diseases.
- An automated and reliable method is necessary.

Counting Synapses

Computing Homology Groups

- Counting synapses:
- Counting connected components.
- Computing a homology group: H_{0}.
- It is a matter of matrix diagonalisation.
- Formalisation of Smith Normal Form:
C. Cohen, M. Dénès, A. Mörtberg, V. Siles.
"Smith Normal Form and executable rank for matrices".
http://wiki.portal.chalmers.se/cse/pmwiki.php/ForMath/
- Formalisation of homological computing:
J. Heras, M. Dénès, G. Mata, A. Mörtberg, M. Poza, V. Siles.
"Towards a certified computation of homology groups for digital images". CTIC 2012, LNCS 7309 (2012) 49-57.
- Results with biomedical images:
- Without DVF reduction procedure:
\star Coq is not able to compute homology of this kind of images.
- After reduction procedure:
\star Coq computes in just 25 seconds.

Interoperability

- Could different proof assistants cooperate in a same proof?
- Matrix computing: essentially a first-order problem.
- Formalisation in Isabelle/HOL: Hermite form (J. Aransay, J. Divasón).
- Could the specification be translated automatically to ACL2?
- Interlingua: OCL, the constraint language for UML.
- Largely based in XML manipulation and already-made tools (Eclipse tools, as Ecore).
- Joint work: J. Aransay, J. Divasón, J. Heras, AL Rubio, J. R.

Persistent Homology

- Another biological problem: neuron recognition (where counting synapses).
- Topological tool: persistent homology.
- Formalisation in SSReflect:
J. Heras, T. Coquand, A. Mörtberg, V. Siles. "Computing Persistent Homology within Coq/SSReflect".
- To define persistent homology a filtration of a simplicial complex is required.
- From the same data, a spectral sequence can be defined.
- Ana Romero made Kenzo compute spectral sequences. . .
- ... and then persistent homology.

Another published "theorem"

Spectral Sequence Theorem:

$$
\sum_{p=1}^{n} \operatorname{rank} E_{p, q}^{r}=\operatorname{card}\left\{a \in D g m_{p+q}(f) \mid \operatorname{pers}(a) \geq r\right\}
$$

"Computational Topology".
Americal Mathematical Society, 2010.

- Ana Romero (Kenzo) found a discrepancy.
- The formula was corrected.
- Another more accurate formula was given.
- Computer Algebra is going beyond...
- ... more formal verification is needed.

Conclusions and further work

- Conclusion... of the ForMath european project.
- Infrastructure to formalize mathematics in constructive type theory.
- Linear Algebra library.
- Real numbers and differential equations.
- Algebraic topology.
\star Representation of simplicial complexes.
\star Certified computation of homology groups.
\star Representation of the Basic Perturbation Lemma.
\star Integration with other proofs systems.
\star Applications to medical imagery.
- Future:
- From certified computing to efficient certified computing.
- More applications.
\star More Topology in biomedical applications.
\star More verification in Topology.

