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Formalizing mathematics: the European Project ForMath

European Commission FP7, STREP project ForMath: 2010-2013

Objective: formalized libraries for mathematical algorithms.

Four nodes:
I Gothenburg University: Thierry Coquand, leader.
I Radboud University.
I INRIA.
I Universidad de La Rioja.

Julio Rubio (Universidad de La Rioja) Formalising Algebraic Topology 2 / 23



Status of ForMath

Four Work Packages:
I Infrastructure to formalize mathematics in constructive type theory.

F SSReflect extension of Coq.
Gonthier’s library created for the Four Color Theorem.
Now extended and applied to simple finite group classification.

F Mixing deduction and computation, Big-Op library, . . .

I Linear Algebra library.

F Verified and efficient matrix manipulation.
F Coherent and strongly discrete rings in type theory.

I Real numbers and differential equations.

F Verified and efficient reals in Coq.
F Numerical integration, Simpson’s rule, Newton method, . . .

I Algebraic topology and. . . (medical) image processing.

Why formalizing mathematics?
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Summary

Computer-based mathematical error detection.

Essential building blocks.
I Eilenberg-Zilber (EZ) theorem.
I Basic Perturbation Lemma (BPL).

Formalisation of the EZ theorem.

Formalisation of the BPL.

Discrete vector fields.

Biomedical image processing.

Formalisation of homological computing.

Interoperability.

Persistent homology.

Another mathematical error.

Conclusions and further work.
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A published “theorem”

Theorem 5.4: Let A4 be the 4-th alternating group.
Then π4(ΣK (A4, 1)) = Z4

“On homotopy groups of the suspended classifying spaces”.
Algebraic and Geometric Topology 10 (2010) 565-625.

A4 = 4-th alternating group.

K (A4, 1) = Eilenberg-MacLane space.

Σ = Suspension.

π4() = 4-th homotopy group.

Z4 = cyclic group with 4 elements.
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A computer calculation
After some previous definitions, we define in Kenzo the alternate group A4:
> (setf A4 (group1 (tcc rsltn))) ; rsltn = resolution

[K1 Group]

It is a group with effective homology (Ana Romero’s programs):
> (setf (slot-value A4 ’resolution) rsltn)

[K10 Reduction K2 => K5]

We apply the classifying construction, obtaining K (A4, 1):
> (setf k-A4-1 (k-g-1 A4))

[K11 Simplicial-Group]

We apply the suspension construction, obtaining ΣK (A4, 1):
> (setf s-k-A4-1 (suspension k-A4-1))

[K23 Simplicial-Set]

And finally we compute the controversial homotopy group:
> (homotopy s-k-A4-1 4)

Homotopy in dimension 4 :

Component Z/4Z

Component Z/3Z
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Anatomy of a calculation

In this particular case, Kenzo was right and the mathematical text
wrong.

In general?

Increasing trust: formal verification of (part of) (the algorithms
supporting) the programs.

π4(ΣK (A4, 1)) = H4(K4).

A homotopy group is computed as a homology group of an space K4.

K4 is the total space of a fibration: K (Z6, 2)→ K4 → K3.

( Z6 = H3(K3) = π3(ΣK (A4, 1)). )

K4 = K (Z6, 2)×τ K3 (twisted Cartesian product).

The (effective) homology of K (Z6, 2) and K3 are known.

An effective version of the Serre spectral sequence is needed.
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Reductions

Given two chain complexes C := {(Cn, dn)}n∈Z and
C ′ := {(C ′n, d

′
n)}n∈Z a reduction between them is (f , g , h) where

I f : C → C ′ and g : C ′ → C are chain morphisms
I and h is a family of homomorphisms (called homotopy operator)

hn : Cn → Cn+1.

satisfying

1 f ◦ g = 1
2 d ◦ h + h ◦ d + g ◦ f = 1
3 f ◦ h = 0
4 h ◦ g = 0
5 h ◦ h = 0

If (f , g , h) : C =⇒ C ′ is a reduction, then H(C ) ∼= H(C ′).

Theorem: From A =⇒ A′ and B =⇒ B ′, an algorithm constructs
A⊗ B =⇒ A′ ⊗ B ′.

Corollary: If A and B are with effective homology, then A⊗ B is with
effective homology.
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Essential building blocks

Eilenberg-Zilber Theorem: C (F × B) =⇒ C (F )⊗ C (B).

It is the case of a trivial fibration: F → F × B → B.

What about the general (twisted) case? F → F ×τ B → B.

Then?

Given a chain complex (C , d), a perturbation for it is a family ρ of
group homomorphisms ρn : Cn → Cn−1 such that (C , d + ρ) is again
a chain complex (that is to say: (d + ρ) ◦ (d + ρ) = 0).

Basic Perturbation Lemma: Let (f , g , h) : (C , d) =⇒ (C ′, d ′) be a
reduction and be ρ a perturbation for (C , d) which are locally
nilpotent. Then there exists a reduction
(f∞, g∞, h∞) : (C , d + ρ) =⇒ (C ′, d ′∞).

Julio Rubio (Universidad de La Rioja) Formalising Algebraic Topology 9 / 23



Putting all together

Given a fibration F → F ×τ B → B where

I F and B are with effective homology (known reductions C (F ) =⇒ HF
and C (B) =⇒ HB) and

I B is simply connected.

EZ application: C (F × B) =⇒ C (F )⊗ C (B).

BPL application: C (F ×τ B) =⇒ C (F )⊗t C (B).

Tensor product application: C (F )⊗ C (B) =⇒ HF ⊗ HB.

BPL application (B simply connected):
C (F )⊗t C (B) =⇒ HF ⊗t′ HB

Composing it all: C (F ×τ B) =⇒ HF ⊗t′ HB.

Conclusion: The total space F ×τ B is with effective homology.
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Statement of the EZ theorem

(f , g , h) : C (F × B) =⇒ C (F )⊗ C (B)
I f = AW (Alexander-Whitney)

AW (xn, yn) =
∑n

i=0 ∂i+1 . . . ∂nxn ⊗ ∂0 . . . ∂i−1yn
I g = EML (Eilenberg-MacLane)

EML(xp ⊗ yq) =∑
(α,β)∈{(p,q)-shuffles}(−1)sg(α,β)(ηβq . . . ηβ1 xp, ηαp . . . ηα1 yq)

I h = SHI (Shih)
SHI (xn, yn) =∑

(−1)n−p−q+sg(α,β)(ηβq+n−p−q . . . ηβ1+n−p−qηn−p−q−1∂n−q+1 . . . ∂nxn,

ηαp+1+n−p−q . . . ηα1+n−p−q∂n−p−q . . . ∂n−q−1yn).

where a (p, q)-shuffle (α, β) = (α1, . . . , αp, β1, . . . , βq) is a
permutation of the set {0, 1, . . . , p + q − 1} such that αi < αi+1 and
βj < βj+1.

EZ is responsible of much of the exponential behaviour of Kenzo.

It is essentially unique (so unavoidable).

The formulas are very well-structured and of combinatorial nature.
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Formalisation of the EZ theorem

A proof purely based on induction + rewriting.

The ACL2 theorem prover is the right tool for the task.

Main conceptual tool: simplicial polynomials.

It allows one to enhance ACL2 with algebraic rewriting.

Already used in the proof of the Normalisation Theorem.
I CD(K ) =⇒ C (K ).
I L. Lambán, F. J. Mart́ın-Mateos, J. R., J. L. Ruiz-Reina.

“Formalization of a normalization theorem in simplicial topology”.
Annals of Mathematics and Artificial Intelligence 64 (2012) 1-37.

EZ formalisation by the same team, with proving effort
I EZ: 13000 lines.
I Normalisation: 4500 lines.
I Common infrastructure: 6000 lines.
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Statement of the BPL

Let (f , g , h) : (D, dD) =⇒ (C , dC ) be a reduction and ρD : D → D a
perturbation of the differential dD satisfying the local nilpotency
condition with respect to the reduction (f , g , h). Then, a new
reduction (f ′, g ′, h′) : (D ′, dD′) =⇒ (C ′, dC ′) can be obtained, where
the underlying graded groups D and D ′ (resp. C and C ′) are the
same, but the differentials are perturbed: dD′ = dD + ρD ,
dC ′ = dC + ρC , where ρC = f ρDψg ; f ′ = f φ; g ′ = ψg ; h′ = hφ,
where φ =

∑∞
i=0(−1)i (ρDh)i , and ψ =

∑∞
i=0(−1)i (hρD)i .

Note the role of the series.

The graded groups are general (with infinitely many generators, for
instance).

No combinatorial approach possible.
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Formalisation of the BPL

Isabelle/HOL formalisation:

I J. Aransay, C. Ballarin, J. R.
“A mechanized proof of the Basic Perturbation Lemma”.
Journal of Automated Reasoning 40 (2008) 271-293.

I General statement. Ungraded case. General groups (not effective).

Coq formalisation:

I C. Doḿınguez, J. R.
“Effective homology of bicomplexes, formalized in Coq”.
Theoretical Computer Science 412 (2011) 962-970.

I Bicomplexes only. Graded case. Locally effective and effective groups.

SSReflect formalisation:

I C. Doḿınguez, J. Heras, M. Poza, J. R.
I General statement. Graded case. Only finitely generated groups.
I Based on a shorter and brand new proof by:

A. Romero, F. Sergeraert. “Discrete Vector Fields and Fundamental
Algebraic Topology”. ArXiv 2010.
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Discrete Vector Fields

Given a chain complex C∗ and a dvf , V over C∗
I C∗ =⇒ C c

∗
I generators of C c

∗ are critical cells of C∗

0← Z16 d1←− Z32 d2←− Z16 ← 0
↓

0← Z d̂1←− Z d̂2←− 0← 0
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DVF Reduction Theorem

Let C∗ = (Cp, dp)p∈Z a free chain complex with distinguished Z-basis
βp ⊂ Cp. A discrete vector field V on C∗ is a collection of pairs
V = {(σi ; τi )}i∈I satisfying the conditions:

I Every σi is some element of βp, in which case τi ∈ βp+1.
I Every component σi is a regular face of the corresponding τi .
I Each generator (cell) of C∗ appears at most once in V .

DVF Reduction Theorem: Let C∗ = (Cp, dp)p∈Z be a free chain
complex and V = {(σi ; τi )}i∈I be an admissible discrete vector field
on C∗. Then the vector field V defines a canonical reduction
(f , g , h) : (Cp, dp) =⇒ (C c

p , d
′
p) where C c

p = Z[βcp ] is the free
Z-module generated by the critical p-cells.

One proof by Romero and Sergeraert uses the BPL.

Formalised in: J. Heras, M. Poza, J. R. “Verifying an Algorithm
Computing Discrete Vector Fields for Digital Imaging”. Calculemus
2012, LNCS 7362 (2012) 216-230.
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Biomedical image processing

Constraints in the previous formalisation:

I Computing over Z2.
I Only finitely generated groups (finite dimensional vector spaces,

matrices, SSReflect).

Application: counting synapses.

I Synapses are the points of connection between neurons.
I Relevance: Computational capabilities of the brain.
I Procedures to modify the synaptic density may be an important asset

in the treatment of neurological diseases.
I An automated and reliable method is necessary.
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Counting Synapses
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Computing Homology Groups

Counting synapses:
I Counting connected components.
I Computing a homology group: H0.

It is a matter of matrix diagonalisation.

Formalisation of Smith Normal Form:
C. Cohen, M. Dénès, A. Mörtberg, V. Siles.
“Smith Normal Form and executable rank for matrices”.
http://wiki.portal.chalmers.se/cse/pmwiki.php/ForMath/

Formalisation of homological computing:
J. Heras, M. Dénès, G. Mata, A. Mörtberg, M. Poza, V. Siles.
“Towards a certified computation of homology groups for digital
images”. CTIC 2012, LNCS 7309 (2012) 49-57.

Results with biomedical images:
I Without DVF reduction procedure:

F Coq is not able to compute homology of this kind of images.
I After reduction procedure:

F Coq computes in just 25 seconds.
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Interoperability

Could different proof assistants cooperate in a same proof?

Matrix computing: essentially a first-order problem.

Formalisation in Isabelle/HOL: Hermite form (J. Aransay, J. Divasón).

Could the specification be translated automatically to ACL2?

Interlingua: OCL, the constraint language for UML.

Largely based in XML manipulation and already-made tools (Eclipse
tools, as Ecore).

Joint work: J. Aransay, J. Divasón, J. Heras, AL Rubio, J. R.
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Persistent Homology

Another biological problem: neuron recognition (where counting
synapses).

Topological tool: persistent homology.

Formalisation in SSReflect:
J. Heras, T. Coquand, A. Mörtberg, V. Siles.
“Computing Persistent Homology within Coq/SSReflect”.

To define persistent homology a filtration of a simplicial complex is
required.

From the same data, a spectral sequence can be defined.

Ana Romero made Kenzo compute spectral sequences. . .

. . . and then persistent homology.
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Another published “theorem”

Spectral Sequence Theorem:∑n
p=1 rankE r

p,q = card{a ∈ Dgmp+q(f )|pers(a) ≥ r}

“Computational Topology”.
Americal Mathematical Society, 2010.

Ana Romero (Kenzo) found a discrepancy.

The formula was corrected.

Another more accurate formula was given.

Computer Algebra is going beyond. . .

. . . more formal verification is needed.
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Conclusions and further work

Conclusion. . . of the ForMath european project.
I Infrastructure to formalize mathematics in constructive type theory.
I Linear Algebra library.
I Real numbers and differential equations.
I Algebraic topology.

F Representation of simplicial complexes.
F Certified computation of homology groups.
F Representation of the Basic Perturbation Lemma.
F Integration with other proofs systems.
F Applications to medical imagery.

Future:
I From certified computing to efficient certified computing.
I More applications.

F More Topology in biomedical applications.
F More verification in Topology.
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