Knots, Braids and First Order Logic

Siddhartha Gadgil and T. V. H. Prathamesh

Indian Institute of Science, Bangalore

September 18, 2012

< 4 ₽ > < 3

- 3 Algebraic Formulation of Knot Theory
- 4 Stable Links and Infinite Braids
- 5 Infinite Braids as a Canonical Model

< A >

Link Axioms Algebraic Formulation of Knot Theory Stable Links and Infinite Braids Infinite Braids as a Canonical Model

Knot

Definition

A knot K is defined as the image of a smooth, injective map $h: S^1 \to S^3$ so that $h'(\theta) \neq 0$ for all $\theta \in S^1$.

< □ > < 同 > < 三 >

Link Axioms Algebraic Formulation of Knot Theory Stable Links and Infinite Braids Infinite Braids as a Canonical Model

Knot

Definition

A knot K is defined as the image of a smooth, injective map $h: S^1 \to S^3$ so that $h'(\theta) \neq 0$ for all $\theta \in S^1$.

(Image source: Wikipedia)

Siddhartha Gadgil and T. V. H. Prathamesh Knots, Braids and First Order Logic

Image: A mathematical states and a mathem

Link Axioms Algebraic Formulation of Knot Theory Stable Links and Infinite Braids Infinite Braids as a Canonical Model

Link

Definition

A link $L \subset S^3$ is a smooth 1-dimensional submanifold of S^3 such that each component of L is a knot and there are only finitely many components.

Link Axioms Algebraic Formulation of Knot Theory Stable Links and Infinite Braids Infinite Braids as a Canonical Model

Link

Definition

A link $L \subset S^3$ is a smooth 1-dimensional submanifold of S^3 such that each component of L is a knot and there are only finitely many components.

▲ 同 ▶ → 三 ▶

When are two knots(or links) regarded as same or different?

When are two knots(or links) regarded as same or different?

When are two knots(or links) regarded as same or different?

▲ 同 ▶ ▲ 目

Link Axioms Algebraic Formulation of Knot Theory Stable Links and Infinite Braids Infinite Braids as a Canonical Model

Definition (Ambient Isotopy)

Two links L_1 and L_2 in S^3 are said to be ambient isotopic if there exists a smooth map $F: S^3 \times [0,1] \to S^3$ such that

< 4 ₽ > < Ξ

Link Axioms Algebraic Formulation of Knot Theory Stable Links and Infinite Braids Infinite Braids as a Canonical Model

Definition (Ambient Isotopy)

Two links L_1 and L_2 in S^3 are said to be ambient isotopic if there exists a smooth map $F: S^3 \times [0,1] \to S^3$ such that

•
$$F|_{S^3 \times \{0\}} = id|_{S^3} : S^3 \to S^3.$$

Image: A mathematical states and a mathem

Link Axioms Algebraic Formulation of Knot Theory Stable Links and Infinite Braids Infinite Braids as a Canonical Model

Definition (Ambient Isotopy)

Two links L_1 and L_2 in S^3 are said to be ambient isotopic if there exists a smooth map $F: S^3 \times [0,1] \to S^3$ such that

•
$$F|_{S^3 \times \{0\}} = id|_{S^3} : S^3 \to S^3.$$

• $F|_{S^3 \times \{1\}}(L_1) = L_2.$

Link Axioms Algebraic Formulation of Knot Theory Stable Links and Infinite Braids Infinite Braids as a Canonical Model

Definition (Ambient Isotopy)

Two links L_1 and L_2 in S^3 are said to be ambient isotopic if there exists a smooth map $F: S^3 \times [0,1] \to S^3$ such that

•
$$F|_{S^3 \times \{0\}} = id|_{S^3} : S^3 \to S^3.$$

2
$$F|_{S^3 \times \{1\}}(L_1) = L_2.$$

•
$$F|_{S^3 \times \{t\}}$$
 is a diffeomorphism $\forall t \in [0, 1]$

< 4 ₽ > < Ξ

Link Axioms Algebraic Formulation of Knot Theory Stable Links and Infinite Braids Infinite Braids as a Canonical Model

Definition (Ambient Isotopy)

Two links L_1 and L_2 in S^3 are said to be ambient isotopic if there exists a smooth map $F: S^3 \times [0,1] \to S^3$ such that

•
$$F|_{S^3 \times \{0\}} = id|_{S^3} : S^3 \to S^3.$$

$$P|_{S^3 \times \{1\}}(L_1) = L_2.$$

•
$$F|_{S^3 \times \{t\}}$$
 is a diffeomorphism $\forall t \in [0, 1]$

F is smooth.

Image: A mathematical states and a mathem

Link Axioms Algebraic Formulation of Knot Theory Stable Links and Infinite Braids Infinite Braids as a Canonical Model

Definition (Ambient Isotopy)

Two links L_1 and L_2 in S^3 are said to be ambient isotopic if there exists a smooth map $F: S^3 \times [0,1] \to S^3$ such that

•
$$F|_{S^3 \times \{0\}} = id|_{S^3} : S^3 \to S^3.$$

2
$$F|_{S^3 \times \{1\}}(L_1) = L_2.$$

3
$$F|_{S^3 \times \{t\}}$$
 is a diffeomorphism $\forall t \in [0, 1]$

F is smooth.

- Ambient isotopy induces an equivalence relation between links.
- *Knot Equivalence Problem*: Given two knots *K*₁ and *K*₂, are they ambient isotopic to each other?
- *Unknotting Problem*: Given two knot, is it ambient isotopic to the unknot?

< 4 ₽ > < Ξ

Link Axioms Algebraic Formulation of Knot Theory Stable Links and Infinite Braids Infinite Braids as a Canonical Model

Stable Equivalence of Links

Siddhartha Gadgil and T. V. H. Prathamesh Knots, Braids and First Order Logic

- 4 同 6 4 日 6 4 日 6

э

Stable Equivalence of Links

Definition

A link L' is said to be a stabilisation of a link L if the following conditions hold.

▲ 同 ▶ → ● 三

Stable Equivalence of Links

Definition

A link L' is said to be a stabilisation of a link L if the following conditions hold.

• $L' = L \cup L''$ with L'' disjoint from L.

▲ 同 ▶ ▲ 目

Stable Equivalence of Links

Definition

A link L' is said to be a stabilisation of a link L if the following conditions hold.

- $L' = L \cup L''$ with L'' disjoint from L.
- There is a collection of disjoint, smoothly embedded discs n

$$D = \{D_1, D_2, \dots, D_n\}$$
 in $S^3 \setminus L$, with $L'' = \bigcup_{i=1} \partial D_i$

< A > < 3

Stable Equivalence of Links

Definition

A link L' is said to be a stabilisation of a link L if the following conditions hold.

- $L' = L \cup L''$ with L'' disjoint from L.
- There is a collection of disjoint, smoothly embedded discs n

$$D = \{D_1, D_2, \dots, D_n\}$$
 in $S^3 \setminus L$, with $L'' = \bigcup_{i=1} \partial D_i$

< 同 > < 3

Stable Equivalence of Links

Definition

A link L' is said to be a stabilisation of a link L if the following conditions hold.

• $L' = L \cup L''$ with L'' disjoint from L.

Provide the state of the sta

$$D = \{D_1, D_2, \dots, D_n\}$$
 in $S^3 \setminus L$, with $L'' = \bigcup_{i=1}^n \partial D_i$

Stable Equivalence of Links

Definition

A link L' is said to be a stabilisation of a link L if the following conditions hold.

• $L' = L \cup L''$ with L'' disjoint from L.

Provide the state of the sta

$$D = \{D_1, D_2, \dots, D_n\}$$
 in $S^3 \setminus L$, with $L'' = \bigcup_{i=1}^n \partial D_i$

Stable Equivalence of Links

Definition

A link L' is said to be a stabilisation of a link L if the following conditions hold.

• $L' = L \cup L''$ with L'' disjoint from L.

Intere the state of the stat

$$D = \{D_1, D_2, \dots, D_n\}$$
 in $S^3 \setminus L$, with $L'' = \bigcup_{i=1}^n \partial D_i$

Stable Equivalence of Links

Definition

A link L' is said to be a stabilisation of a link L if the following conditions hold.

• $L' = L \cup L''$ with L'' disjoint from L.

Intere the state of the stat

$$D = \{D_1, D_2, \dots, D_n\}$$
 in $S^3 \setminus L$, with $L'' = \bigcup_{i=1}^n \partial D_i$

Link Axioms Algebraic Formulation of Knot Theory Stable Links and Infinite Braids Infinite Braids as a Canonical Model

Definition (Stable equivalence of links)

Two links L_1 and L_2 are said to be stably equivalent, denoted $L_1 \equiv L_2$, if there are stabilisations L'_1 and L'_2 of L_1 and L_2 , respectively, that are ambient isotopic.

< 4 ₽ > < 3

Link Axioms Algebraic Formulation of Knot Theory Stable Links and Infinite Braids Infinite Braids as a Canonical Model

Definition (Stable equivalence of links)

Two links L_1 and L_2 are said to be stably equivalent, denoted $L_1 \equiv L_2$, if there are stabilisations L'_1 and L'_2 of L_1 and L_2 , respectively, that are ambient isotopic.

Theorem

If K_1 and K_2 are knots (regarded as links), then $K_1 \equiv K_2$ if and only if K_1 is ambient isotopic to K_2 .

< 4 ₽ > < 3

Link Axioms (First Order Logic with Equality)

Consider a language with signature $(\cdot, T, \equiv, 1, \sigma, \bar{\sigma})$ such that \cdot is a 2-function ,T is a 1-function, \equiv is a 2-predicate, while 1, σ and $\bar{\sigma}$ are constants.

・ 同・ ・ ヨ・

Link Axioms (First Order Logic with Equality)

Consider a language with signature $(\cdot, T, \equiv, 1, \sigma, \bar{\sigma})$ such that \cdot is a 2-function ,T is a 1-function, \equiv is a 2-predicate, while 1, σ and $\bar{\sigma}$ are constants.

• Group Axioms(for closed terms)

- $2 \quad \forall x \quad 1 \cdot x = x$

Link Axioms (First Order Logic with Equality)

Consider a language with signature $(\cdot, T, \equiv, 1, \sigma, \bar{\sigma})$ such that \cdot is a 2-function ,T is a 1-function, \equiv is a 2-predicate, while 1, σ and $\bar{\sigma}$ are constants.

• Group Axioms(for closed terms)

•
$$\forall x, y, z \quad (x \cdot (y \cdot z) = ((x \cdot y) \cdot z)$$
 • Shift operation

- $2 \quad \forall x \quad 1 \cdot x = x$

 $\forall x, y \quad T(x \cdot y) = T(x) \cdot T(y)$ T(e) = e

Link Axioms (First Order Logic with Equality)

Consider a language with signature $(\cdot, T, \equiv, 1, \sigma, \bar{\sigma})$ such that \cdot is a 2-function ,T is a 1-function, \equiv is a 2-predicate, while 1, σ and $\bar{\sigma}$ are constants.

• Group Axioms(for closed terms)

•
$$\forall x, y, z \quad (x \cdot (y \cdot z) = ((x \cdot y) \cdot z)$$
 • Shift operation

- $2 \quad \forall x \quad 1 \cdot x = x$

 $\forall x, y \quad T(x \cdot y) = T(x) \cdot T(y)$ T(e) = e

Link Axioms (contd.)

Braid axioms

(

$$\forall b \quad \sigma \cdot T^2(b) = T^2(b) \cdot \sigma$$

< 日 > < 同 > < 三 > < 三 >

э

Link Axioms (contd.)

Braid axioms

$$\forall b \quad \sigma \cdot T^2(b) = T^2(b) \cdot \sigma$$

- Equivalence relation

э

Link Axioms (contd.)

Braid axioms

$$2 \quad \forall b \quad \sigma \cdot T^2(b) = T^2(b) \cdot \sigma$$

Markov moves

- Equivalence relation
 - $1 \forall x \quad x \equiv x$

Image: A = A

Link Axioms (contd.)

Braid axioms

$$2 \quad \forall b \quad \sigma \cdot T^2(b) = T^2(b) \cdot \sigma$$

- Equivalence relation

$$\forall x, y, z \quad x \equiv y \land y \equiv z \implies x \equiv z$$

Image: A image: A

Markov moves

These axioms will be called *link axioms* and any model of these axioms will be called a *link model*.

Algebraic Formulation of Knot Theory

Definition

The n-braid group B_n is the group generated by $\sigma_1, \sigma_2, \ldots, \sigma_{n-1}$ with the relations

Image: A = A

Algebraic Formulation of Knot Theory

Definition

The n-braid group B_n is the group generated by $\sigma_1, \sigma_2, \ldots, \sigma_{n-1}$ with the relations

Image: A = A
Algebraic Formulation of Knot Theory

Definition

The n-braid group B_n is the group generated by $\sigma_1, \sigma_2, \ldots, \sigma_{n-1}$ with the relations

2)
$$\sigma_i \cdot \sigma_{i+1} \cdot \sigma_i = \sigma_{i+1} \cdot \sigma_i \cdot \sigma_{i+1}$$
, where $i \leq n-2$.

< D > < A > < B >

Algebraic Formulation of Knot Theory

Definition

The n-braid group B_n is the group generated by $\sigma_1, \sigma_2, \ldots, \sigma_{n-1}$ with the relations

2)
$$\sigma_i \cdot \sigma_{i+1} \cdot \sigma_i = \sigma_{i+1} \cdot \sigma_i \cdot \sigma_{i+1}$$
, where $i \leq n-2$.

Definition

An element of $\cup_{n \in \mathbb{N}} B_n$ is called a braid.

<ロト < 同ト < 三ト

Every element of the braid group B_n is associated to a diagram.

(日) (同) (三) (三)

э

Every element of the braid group B_n is associated to a diagram.

- ● ● ●

Every element of the braid group B_n is associated to a diagram.

< □ > < □

Every element of the braid group B_n is associated to a diagram.

< □ > < □

We can associate a link $\lambda(b, m)$ to the braid $b \in B_m$ by closing up the diagram associated to a braid and smoothening the sharp edges.

Image: A = A

We can associate a link $\lambda(b, m)$ to the braid $b \in B_m$ by closing up the diagram associated to a braid and smoothening the sharp edges.

▲ 同 ▶ ▲ 目

We can associate a link $\lambda(b, m)$ to the braid $b \in B_m$ by closing up the diagram associated to a braid and smoothening the sharp edges.

A 10

We can associate a link $\lambda(b, m)$ to the braid $b \in B_m$ by closing up the diagram associated to a braid and smoothening the sharp edges.

This gives a function λ from the set $\mathcal{B} = \{(b, m) : b \in B_m\}$ to the set of links.

We can associate a link $\lambda(b, m)$ to the braid $b \in B_m$ by closing up the diagram associated to a braid and smoothening the sharp edges.

This gives a function λ from the set $\mathcal{B} = \{(b, m) : b \in B_m\}$ to the set of links.

Theorem (Alexander)

For every link L, there is an integer m > 1 and a braid $B \in B_m$ so that L is ambient isotopic to $\lambda(b, m)$.

Definition (Markov Equivalence)

The equivalence relation on ${\mathcal B}$ generated by the relations

< □ > < 同 > < 回 >

э

Definition (Markov Equivalence)

The equivalence relation on $\ensuremath{\mathcal{B}}$ generated by the relations

•
$$\forall a, b \in B_m$$
, $(b, m) \sim (aba^{-1}, m)$.

< □ > < 同 > < 回 >

Definition (Markov Equivalence)

The equivalence relation on $\ensuremath{\mathcal{B}}$ generated by the relations

- $\forall a, b \in B_m$, $(b, m) \sim (aba^{-1}, m)$.
- $\forall b \in B_m$, $(b, m) \sim (b\sigma_m, m+1)$.

< D > < A > < B >

Definition (Markov Equivalence)

The equivalence relation on ${\mathcal B}$ generated by the relations

• $\forall a, b \in B_m$, $(b, m) \sim (aba^{-1}, m)$.

•
$$\forall b \in B_m$$
, $(b,m) \sim (b\sigma_m, m+1)$.

•
$$\forall b \in B_m, (b, m) \sim (b\sigma_m^{-1}, m+1).$$

< □ > < 同 > < 回 >

Definition (Markov Equivalence)

The equivalence relation on ${\mathcal B}$ generated by the relations

• $\forall a, b \in B_m$, $(b, m) \sim (aba^{-1}, m)$.

•
$$\forall b \in B_m$$
, $(b, m) \sim (b\sigma_m, m+1)$.

•
$$\forall b \in B_m$$
, $(b,m) \sim (b\sigma_m^{-1},m+1)$.

< □ > < 同 > < 回 >

Definition (Markov Equivalence)

The equivalence relation on ${\mathcal B}$ generated by the relations

• $\forall a, b \in B_m$, $(b, m) \sim (aba^{-1}, m)$.

•
$$\forall b \in B_m$$
, $(b, m) \sim (b\sigma_m, m+1)$.

•
$$\forall b \in B_m$$
, $(b,m) \sim (b\sigma_m^{-1},m+1)$.

▲□ ► ▲ □ ►

Definition (Markov Equivalence)

The equivalence relation on ${\mathcal B}$ generated by the relations

• $\forall a, b \in B_m$, $(b, m) \sim (aba^{-1}, m)$.

•
$$\forall b \in B_m$$
, $(b, m) \sim (b\sigma_m, m+1)$.

•
$$\forall b \in B_m$$
, $(b,m) \sim (b\sigma_m^{-1},m+1)$.

Image: A = A

Definition (Markov Equivalence)

The equivalence relation on ${\mathcal B}$ generated by the relations

•
$$\forall a, b \in B_m$$
, $(b, m) \sim (aba^{-1}, m)$.

•
$$\forall b \in B_m$$
, $(b,m) \sim (b\sigma_m, m+1)$.

•
$$\forall b \in B_m$$
, $(b,m) \sim (b\sigma_m^{-1},m+1)$.

・ロト ・日 ・ ・ 目 ・

∃ >

Definition (Markov Equivalence)

The equivalence relation on ${\mathcal B}$ generated by the relations

• $\forall a, b \in B_m$, $(b, m) \sim (aba^{-1}, m)$.

•
$$\forall b \in B_m$$
, $(b, m) \sim (b\sigma_m, m+1)$.

•
$$\forall b \in B_m$$
, $(b,m) \sim (b\sigma_m^{-1},m+1)$.

Definition (Markov Equivalence)

The equivalence relation on ${\mathcal B}$ generated by the relations

• $\forall a, b \in B_m$, $(b, m) \sim (aba^{-1}, m)$.

•
$$\forall b \in B_m$$
, $(b, m) \sim (b\sigma_m, m+1)$.

•
$$\forall b \in B_m$$
, $(b,m) \sim (b\sigma_m^{-1},m+1)$.

Definition (Alternative Formulation of Markov Equivalence)

Siddhartha Gadgil and T. V. H. Prathamesh Knots, Braids and First Order Logic

<ロト < 同ト < 三ト

- ∢ ≣ ▶

э

Definition (Alternative Formulation of Markov Equivalence)

• $\forall a, b \in B_m, m > 1, (b, m) \cong (aba^{-1}, m).$

<ロト < 同ト < 三ト

- ∢ ⊒ →

э

Definition (Alternative Formulation of Markov Equivalence)

- $\forall a, b \in B_m, m > 1, (b, m) \cong (aba^{-1}, m).$
- For $i_k \leq m-1$, $(\prod_{k=1}^m \sigma_{i_k}^{\epsilon_k}, m) \cong (\sigma_1 \prod_{k=1}^m \sigma_{i_k+1}^{\epsilon_k}, m+1)$.

・ロト ・得ト ・ヨト ・ヨト

Definition (Alternative Formulation of Markov Equivalence)

- $\forall a, b \in B_m, m > 1, (b, m) \cong (aba^{-1}, m).$
- For $i_k \leq m-1$, $(\prod_{k=1}^m \sigma_{i_k}^{\epsilon_k}, m) \cong (\sigma_1 \prod_{k=1}^m \sigma_{i_k+1}^{\epsilon_k}, m+1)$.
- For $i_k \leq m-1$, $(\prod_{k=1}^m \sigma_{i_k}^{\epsilon_k}, m) \cong (\sigma_1^{-1} \prod_{k=1}^m \sigma_{i_k+1}^{\epsilon_k}, m+1).$

- 4 同 2 4 回 2 4 U

Definition (Alternative Formulation of Markov Equivalence)

- $\forall a, b \in B_m, \ m > 1, \ (b, m) \cong (aba^{-1}, m).$
- For $i_k \leq m-1$, $(\prod_{k=1}^m \sigma_{i_k}^{\epsilon_k}, m) \cong (\sigma_1 \prod_{k=1}^m \sigma_{i_k+1}^{\epsilon_k}, m+1)$.

• For
$$i_k \leq m-1$$
, $(\prod_{k=1}^m \sigma_{i_k}^{\epsilon_k}, m) \cong (\sigma_1^{-1} \prod_{k=1}^m \sigma_{i_k+1}^{\epsilon_k}, m+1)$.

Theorem (Markov)

For i = 1, 2, let $m_i > 1$ be integers and $b_i \in B_{m_i}$. Then the links $\lambda(b_1, m_1)$ and $\lambda(b_2, m_2)$ are isotopic if and only if $(b_1, m_1) \sim (b_2, m_2)$.

< ロ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Definition (Stable Equivalence of Braids (\approx))

The equivalence relation on $\ensuremath{\mathcal{B}}$ generated by the relations

Image: A = A

Definition (Stable Equivalence of Braids (\approx))

The equivalence relation on ${\mathcal B}$ generated by the relations

• $\forall \beta_1, \beta_2 \in \mathcal{B}$ such that $\beta_1 \sim \beta_2$, $\beta_1 \approx \beta_2$.

< □ > < 同 > < 回 >

Definition (Stable Equivalence of Braids (\approx))

The equivalence relation on $\mathcal B$ generated by the relations

- $\forall \beta_1, \beta_2 \in \mathcal{B}$ such that $\beta_1 \sim \beta_2$, $\beta_1 \approx \beta_2$.
- $m_1,m_2\in\mathbb{N}$ such that $b\in B_{m_1},B_{m_2}$, $(b,m_1)pprox(b,m_2)$

(日) (同) (三) (三)

Definition (Stable Equivalence of Braids (\approx))

The equivalence relation on $\mathcal B$ generated by the relations

- $\forall \beta_1, \beta_2 \in \mathcal{B}$ such that $\beta_1 \sim \beta_2$, $\beta_1 \approx \beta_2$.
- $m_1,m_2\in\mathbb{N}$ such that $b\in B_{m_1},B_{m_2}$, $(b,m_1)pprox(b,m_2)$

Lemma

Two links are stably equivalent if and only if given $\lambda(b_1, m_1) = l_1$ and $\lambda(b_2, m_2) = l_2$, then $(b_1, m_1) \approx (b_2, m_2)$.

(日)

Stable Links and Infinite Braids

Siddhartha Gadgil and T. V. H. Prathamesh Knots, Braids and First Order Logic

(日) (同) (三) (三)

э

Stable Links and Infinite Braids

Definition

The braid group B_{∞} is the group generated by the set $\{\sigma_i\}_{i\in\mathbb{N}}$ with the relations

•
$$\sigma_i \cdot \sigma_j = \sigma_i \cdot \sigma_j$$
, where $i, j \in \mathbb{N}, i \ge j + 2$

2
$$\sigma_i \cdot \sigma_{i+1} \cdot \sigma_i = \sigma_{i+1} \cdot \sigma_i \cdot \sigma_{i+1}$$
, where $i \in \mathbb{N}$.

< 4 → < 三

Stable Links and Infinite Braids

Definition

The braid group B_{∞} is the group generated by the set $\{\sigma_i\}_{i\in\mathbb{N}}$ with the relations

2
$$\sigma_i \cdot \sigma_{i+1} \cdot \sigma_i = \sigma_{i+1} \cdot \sigma_i \cdot \sigma_{i+1}$$
, where $i \in \mathbb{N}$.

Definition (Shift Operator)

 $\mathcal{T}:B_\infty\to B_\infty$ is a group homomorphism such that

$$T(\sigma_i)=\sigma_{i+1}.$$

< D > < A > < B >

Stable Links and Infinite Braids

Definition

The braid group B_{∞} is the group generated by the set $\{\sigma_i\}_{i\in\mathbb{N}}$ with the relations

2
$$\sigma_i \cdot \sigma_{i+1} \cdot \sigma_i = \sigma_{i+1} \cdot \sigma_i \cdot \sigma_{i+1}$$
, where $i \in \mathbb{N}$.

Definition (Shift Operator)

 $\mathcal{T}:B_\infty\to B_\infty$ is a group homomorphism such that

$$T(\sigma_i)=\sigma_{i+1}.$$

Definition (B_{∞} -Stable Equivalence)

 B_{∞} -Stable Equivalence is the equivalence relation \equiv on the group B_{∞} which is generated by the relations

• For
$$a, b \in B_{\infty}$$
, $aba^{-1} \equiv b$

2 For
$$b \in B_{\infty}$$
, $b \equiv \sigma_1 T(b)$.

3 For
$$b\in B_\infty$$
, $b\equiv \sigma_1^{-1}T(b).$

< 4 ₽ > < 3

Definition (B_{∞} -Stable Equivalence)

 B_{∞} -Stable Equivalence is the equivalence relation \equiv on the group B_{∞} which is generated by the relations

• For
$$a, b \in B_{\infty}$$
, $aba^{-1} \equiv b$

2 For
$$b \in B_{\infty}$$
, $b \equiv \sigma_1 T(b)$.

3) For
$$b\in B_\infty$$
, $b\equiv \sigma_1^{-1}T(b).$

Theorem (Main Theorem 1)

There is a surjective function $\Lambda : B_{\infty} \to \mathcal{L}$, where \mathcal{L} is the set of links upto stable equivalence, such that for braids $b_1, b_2 \in B_{\infty}$, $\Lambda(b_1) = \Lambda(b_2)$ if and only if $b_1 \equiv b_2$.
æ

• Group Axioms(for closed terms)

$$2 \quad \forall x \quad 1 \cdot x = x$$

(日) (同) (三) (三)

• Group Axioms(for closed terms)

$$2 \quad \forall x \quad 1 \cdot x = x$$

Shift operation
∀x, y T(x ⋅ y) = T(x) ⋅ T(y)
T(e) = e

Image: A = A

- ₹ 🖬 🕨

• Group Axioms(for closed terms)

$$2 \quad \forall x \quad 1 \cdot x = x$$

Shift operation
∀x, y T(x ⋅ y) = T(x) ⋅ T(y)
T(e) = e

Image: A = A

- ₹ 🖬 🕨

• Braid axioms

$$\forall b, \quad \sigma \cdot T^2(b) = T^2(b) \cdot \sigma$$

<ロ> <同> <同> < 同> < 同>

æ

Braid axioms

$$\forall b, \quad \sigma \cdot T^2(b) = T^2(b) \cdot \sigma$$

• Equivalence relation

$$1 \forall x \quad x \equiv x$$

$$2 \quad \forall x, y \quad x \equiv y \implies y \equiv x$$

(日) (同) (日) (日) (日)

3

Braid axioms

1

$$\forall b, \quad \sigma \cdot T^2(b) = T^2(b) \cdot \sigma$$

Markov moves

• Equivalence relation

< 日 > < 同 > < 三 > < 三 >

Equivalence relation

$$1 \forall x \quad x \equiv x$$

$$2 \quad \forall x, y \quad x \equiv y \implies y \equiv x$$

< 日 > < 同 > < 三 > < 三 >

э

Braid axioms

$$\forall b, \quad \sigma \cdot T^2(b) = T^2(b) \cdot \sigma$$

Markov moves

Theorem (Main Theorem 2)

$$(B_{\infty}, T, \cdot, \equiv, \sigma_1, \sigma_1^{-1})$$
 is a link model.

Equivalence relation

$$1 \forall x \quad x \equiv x$$

$$2 \quad \forall x, y \quad x \equiv y \implies y \equiv x$$

< 日 > < 同 > < 三 > < 三 >

э

Braid axioms

$$\forall b, \quad \sigma \cdot T^2(b) = T^2(b) \cdot \sigma$$

Markov moves

Theorem (Main Theorem 2)

$$(B_{\infty}, T, \cdot, \equiv, \sigma_1, \sigma_1^{-1})$$
 is a link model.

Canonical Model

Siddhartha Gadgil and T. V. H. Prathamesh Knots, Braids and First Order Logic

æ

<ロト <部ト < 注ト < 注ト

Canonical Model

Definition (Canonical Model)

For any signature S and a set of sentences \mathbb{T} in the language L, a structure A is said to be the canonical model if

< 4 ₽ > < 3

Canonical Model

Definition (Canonical Model)

For any signature S and a set of sentences $\mathbb T$ in the language L, a structure A is said to be the canonical model if

•
$$A \models \mathbb{T}$$

< 4 ₽ > < E

Canonical Model

Definition (Canonical Model)

For any signature S and a set of sentences $\mathbb T$ in the language L, a structure A is said to be the canonical model if

- $A \models \mathbb{T}$
- Every element of A is of the form t^A , where t is a closed term of L.

< 4 ₽ > < 3

Canonical Model

Definition (Canonical Model)

For any signature S and a set of sentences $\mathbb T$ in the language L, a structure A is said to be the canonical model if

- $A \models \mathbb{T}$
- Every element of A is of the form t^A , where t is a closed term of L.
- If B is an L-structure and B ⊨ T, there is a unique homomorphism of structures f : A → B.

Image: A image: A

Canonical Model

Definition (Canonical Model)

For any signature S and a set of sentences $\mathbb T$ in the language L, a structure A is said to be the canonical model if

- $A \models \mathbb{T}$
- Every element of A is of the form t^A , where t is a closed term of L.
- If B is an L-structure and B ⊨ T, there is a unique homomorphism of structures f : A → B.

Theorem (Main Theorem 3)

 $(B_{\infty}, T, \cdot, \equiv, \sigma_1, \sigma_1^{-1})$ is a canonical model for link axioms.

イロト イポト イヨト イヨト

Implications

Siddhartha Gadgil and T. V. H. Prathamesh Knots, Braids and First Order Logic

<ロ> <同> <同> < 同> < 同>

æ

Implications

For two closed terms a and b in the carrier set of a link model M and their respective preimages x and y in B_∞ (under the canonical homomorphism), if ¬(a ≡ b) then ¬(x ≡ y). Thus the links corresponding to x and y are different in the sense of stable equivalence and thus upto ambient isotopy.

< A > < E

Implications

- For two closed terms a and b in the carrier set of a link model M and their respective preimages x and y in B_∞ (under the canonical homomorphism), if ¬(a ≡ b) then ¬(x ≡ y). Thus the links corresponding to x and y are different in the sense of stable equivalence and thus upto ambient isotopy.
- The finite models correspond to the embeddings of $(\mathbb{Z}_n, +, Id, \equiv, 0, 1, n-1)$ in monoids.

Image: A = A

Implications

- For two closed terms a and b in the carrier set of a link model M and their respective preimages x and y in B_∞ (under the canonical homomorphism), if ¬(a ≡ b) then ¬(x ≡ y). Thus the links corresponding to x and y are different in the sense of stable equivalence and thus upto ambient isotopy.
- The finite models correspond to the embeddings of $(\mathbb{Z}_n, +, Id, \equiv, 0, 1, n-1)$ in monoids.
- However in the finite models, all the closed terms are markov equivalent to each other.

Image: A = A

Implications

- For two closed terms a and b in the carrier set of a link model M and their respective preimages x and y in B_∞ (under the canonical homomorphism), if ¬(a ≡ b) then ¬(x ≡ y). Thus the links corresponding to x and y are different in the sense of stable equivalence and thus upto ambient isotopy.
- The finite models correspond to the embeddings of $(\mathbb{Z}_n, +, Id, \equiv, 0, 1, n-1)$ in monoids.
- However in the finite models, all the closed terms are markov equivalent to each other.
- This formulation enables us to formulate knot theory in terms of first order logic and thus renders it implementable in Automated Theorem Provers.

・ロト ・同ト ・ヨト ・ヨト

- Braid Groups, Christian Kassel and Vladimir Turaev
- 2 On Knots, Dale Rolfson
- Knots, Braids and First Order Logic, Siddhartha Gadgil and T.V.H. Prathamesh (http://arxiv.org/abs/1209.3562)

< /□ > < 3