
Moment matrices for root finding

B. Mourrain
GALAAD, INRIA Méditerranée, Sophia Antipolis

Bernard.Mourrain@inria.fr

GEOLMI
10-14 Septembre



Algebraic method for solving polynomial equations

I K[x1, . . . , xn] = K[x] = R the multivariate polynomial ring over the
field K.

I (f1, . . . , fs) = I the ideal generated by the polynomials f1, . . . , fs to
solve.

Objective: construct

I A ⊂ R described by a basis B,

I a projection π : R → A such that the following sequence is exact:

0→ I → R
π→ A→ 0.

Then R = A⊕ I and A = R/I ∼ A = imπ, I = ker π.

For p ∈ R, π(p) ∈ A is the normal form of p.

Normal form algorithms: Gröbner basis, H-basis, Janet basis, Border
basis . . .
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Border basis

I B a set of monomials connected to 1
(1 ∈ B, ∀m ∈ B \ {1} ∃m′ ∈ B, i ∈ [1, n] st.
m = m′xi ).

I B+ = B ∪ x1B ∪ · · · ∪ xnB, ∂B= B+ − B.

Theorem

Let d ≥ 2, let B be a subset ofM connected to 1, let
π : 〈B+〉≤d → 〈B〉≤d be a projection and let F be the rewriting family of
π.
The following conditions are equivalent:

1 (Mi ◦Mj −Mj ◦Mi )|〈B〉≤d−2
= 0 for 1 ≤ i < j ≤ n,

2 there exists a unique projection π̃ : R≤d → 〈B〉≤d such that the
restriction of π̃ to 〈B+〉≤d is π and ker π̃ = 〈F 〈≤d〉〉,

+ Can be checked easily by reducing the commutation polynomials.

+ Border basis iff (1) applies for any d ≥ 2.
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Recovering the roots by eigenvector computation

Hypothesis: VK(I ) = {ζ1, . . . , ζr} ⇔ A = K[x]/I of dimension D <∞
over K.
Operators of multiplication:

Ma : A → A
u 7→ a u

Mt
a : Â → Â

Λ 7→ a · Λ = Λ ◦Ma

Their representation in the basis B = {b1, . . . , bD} of A:

Ma = [π(a bj)i ]1≤i ,j≤D , Mt
a = [π(a bi )j ]1≤i ,j≤D .

Theorem

I The eigenvalues of Ma are {a(ζ1), . . . , a(ζr )}.
I The eigenvectors of all (Mt

a )a∈A are (up to a scalar) 1ζi : p 7→ p(ζi ).

In practice, take some a in 〈x1, . . . , xn〉.
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Duality

r The dual de K[x] is K[x]∗ = {Λ : K[x]→ K, linear }.

r K[[x]]∗ = K[[d1, . . . ,dn]].

Λ =
∑
α∈Nn

Λ(xα)dα

where (dα)α∈Nn is the dual basis of (xα)α∈Nn .

r The K[x]-module structure:
∀a ∈ K[x],∀Λ ∈ K[x]∗,

a · Λ : b 7→ a · Λ(b) = Λ(ab)

Example: x1 ·dα1
1 dα2

2 · · ·dαn
n = dα1−1

1 dα2
2 · · ·dαn

n if α1 > 0 and 0 otherwise.
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Examples

I p 7→ p(ζ) represented by the series 1ζ =
∑

α∈Nn ζα dα.

I p 7→ ∂α1
1 · · · ∂αn

n (p)(0) represented by α! dα.

I p 7→ coefficient of xα in π(p).

I p 7→
∫

Ω p dµ.
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Our objective

Exploit the properties of the dual

A∗ = {Λ : K[x]→ K | Λ(I ) = 0} = I⊥

of A = K[x]/I to find the roots V(I ) = {ζ1, . . . , ζr}.

Outline
1 Properties

2 Applications
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Moment matrices and Hankel operators

I For Λ ∈ E ∗ where E = 〈xA〉, the moments are Λ(xα) ∈ K for
α ∈ A ⊂ Nn.

I For E1,E2 such that E1 · E2 ⊂ E and Λ ∈ E ∗, the associated
truncated Hankel operator is

HE1,E2

Λ : E1 → E ∗2

p 7→ p · Λ
where p · Λ : q 7→ Λ(p q).

I Its matrix in the monomial basis (xα)α∈E1 and the dual basis
(dα)α∈E2 is the moment matrix:

[HE1,E2

Λ ] = (Λ(xα+β))α∈E1,β∈E2

I If E = K[x1, . . . , xn], we define the Hankel operator:

HΛ : K[x] → K[x]∗

p 7→ p · Λ
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Linear forms “supported”on points
Definition: Λ is supported on points if IΛ = kerHΛ is zero-dimensional.

Properties:

I Λ is supported on points iff rankHΛ = r <∞.

I If Λ is supported on points, then

Λ : p 7→
r ′∑
i=1

1ζi · θi (∂x1 , . . . , ∂xn)(p)

for some ζi ∈ Cn and some differential polynomials θi with
• r =

∑r ′

i=1 dim(〈∂α∂ (θi )〉)
• VC(IΛ) = {ζ1, . . . , ζr ′}.

I If Λ is supported on points, then AΛ = R/IΛ is a Gorenstein algebra:
1 A∗Λ = AΛ · Λ (free module of rank 1).
2 (a, b) 7→ Λ(ab) is non-degenerate in AΛ.
3 HomAΛ

(A∗Λ,AΛ) = D · AΛ where D =
∑r

i=1 bi ⊗ ωi for (bi )16i6r a
basis of AΛ and (ωi )16i6r its dual basis for Λ.

B. Mourrain Moment matrices for root finding 9 / 20



Linear forms “supported”on points
Definition: Λ is supported on points if IΛ = kerHΛ is zero-dimensional.
Properties:

I Λ is supported on points iff rankHΛ = r <∞.

I If Λ is supported on points, then

Λ : p 7→
r ′∑
i=1

1ζi · θi (∂x1 , . . . , ∂xn)(p)

for some ζi ∈ Cn and some differential polynomials θi with
• r =

∑r ′

i=1 dim(〈∂α∂ (θi )〉)
• VC(IΛ) = {ζ1, . . . , ζr ′}.

I If Λ is supported on points, then AΛ = R/IΛ is a Gorenstein algebra:
1 A∗Λ = AΛ · Λ (free module of rank 1).
2 (a, b) 7→ Λ(ab) is non-degenerate in AΛ.
3 HomAΛ

(A∗Λ,AΛ) = D · AΛ where D =
∑r

i=1 bi ⊗ ωi for (bi )16i6r a
basis of AΛ and (ωi )16i6r its dual basis for Λ.

B. Mourrain Moment matrices for root finding 9 / 20



Linear forms “supported”on points
Definition: Λ is supported on points if IΛ = kerHΛ is zero-dimensional.
Properties:

I Λ is supported on points iff rankHΛ = r <∞.

I If Λ is supported on points, then

Λ : p 7→
r ′∑
i=1

1ζi · θi (∂x1 , . . . , ∂xn)(p)

for some ζi ∈ Cn and some differential polynomials θi with
• r =

∑r ′

i=1 dim(〈∂α∂ (θi )〉)
• VC(IΛ) = {ζ1, . . . , ζr ′}.

I If Λ is supported on points, then AΛ = R/IΛ is a Gorenstein algebra:
1 A∗Λ = AΛ · Λ (free module of rank 1).
2 (a, b) 7→ Λ(ab) is non-degenerate in AΛ.
3 HomAΛ

(A∗Λ,AΛ) = D · AΛ where D =
∑r

i=1 bi ⊗ ωi for (bi )16i6r a
basis of AΛ and (ωi )16i6r its dual basis for Λ.

B. Mourrain Moment matrices for root finding 9 / 20



Linear forms “supported”on points
Definition: Λ is supported on points if IΛ = kerHΛ is zero-dimensional.
Properties:

I Λ is supported on points iff rankHΛ = r <∞.

I If Λ is supported on points, then

Λ : p 7→
r ′∑
i=1

1ζi · θi (∂x1 , . . . , ∂xn)(p)

for some ζi ∈ Cn and some differential polynomials θi with
• r =

∑r ′

i=1 dim(〈∂α∂ (θi )〉)
• VC(IΛ) = {ζ1, . . . , ζr ′}.

I If Λ is supported on points, then AΛ = R/IΛ is a Gorenstein algebra:
1 A∗Λ = AΛ · Λ (free module of rank 1).
2 (a, b) 7→ Λ(ab) is non-degenerate in AΛ.
3 HomAΛ

(A∗Λ,AΛ) = D · AΛ where D =
∑r

i=1 bi ⊗ ωi for (bi )16i6r a
basis of AΛ and (ωi )16i6r its dual basis for Λ.

B. Mourrain Moment matrices for root finding 9 / 20



Linear forms “supported”on points
Definition: Λ is supported on points if IΛ = kerHΛ is zero-dimensional.
Properties:

I Λ is supported on points iff rankHΛ = r <∞.

I If Λ is supported on points, then

Λ : p 7→
r ′∑
i=1

1ζi · θi (∂x1 , . . . , ∂xn)(p)

for some ζi ∈ Cn and some differential polynomials θi with
• r =

∑r ′

i=1 dim(〈∂α∂ (θi )〉)
• VC(IΛ) = {ζ1, . . . , ζr ′}.

I If Λ is supported on points, then AΛ = R/IΛ is a Gorenstein algebra:

1 A∗Λ = AΛ · Λ (free module of rank 1).
2 (a, b) 7→ Λ(ab) is non-degenerate in AΛ.
3 HomAΛ

(A∗Λ,AΛ) = D · AΛ where D =
∑r

i=1 bi ⊗ ωi for (bi )16i6r a
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Positive linear forms

Definition: Λ ∈ R[x]∗ is positive if Λ(p2) > 0 for all p ∈ R[x].

Properties:

I Λ ∈ R[x]∗ is positive iff HΛ < 0.

I If Λ < 0 then IΛ = kerHΛ is a real radical ideal.

I Λ supported on points and positive iff Λ =
∑r

i=1 γi1ζi with γi > 0
and ζi are distinct points of Rn.
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Flat extension

Theorem (LM’09, BCMT’10, BBCM’11)

Let B,B ′ be connected to 1 of size r and Λ ∈ 〈B+ · B ′+〉∗. The following
conditions are equivalent:

1 there exists a unique element Λ̃ ∈ R∗ which extends Λ and such that
B and B ′ are basis of AΛ = R/IΛ.

2

rankHB,B′

Λ = rankHB+,B′+

Λ = r .

3 HB,B′

Λ is invertible and the matrices Mi := HB,xiB
′

Λ (HB,B′

Λ )−1 satisfy

Mi ◦Mj = Mj ◦Mi (1 ≤ i , j ≤ n).

In this case, Λ̃ is supported on points.

+ If HB,B′

Λ < 0 then Λ̃ < 0.
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Applications
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Roots with no multiplicity

Let f = xd + fd−1x
d−1 + · · ·+ f0 ∈ C[x ].

1 Compute a generic sequence (hi )0≤i≤3d−3 such that
hd+j = −fd−1hd−j−1 − · · · − f0 hj .

2 Compute (h′i )0≤i≤2d−2 = f ′ · (hj) such that h′j =
∑d

i=1 i hj+i−1 fi .

3 Compute the kernel of

Hf ′ = (h′i+j)0≤i ,j≤d−1.

+ The polynomial of smallest degree of kerHf ′ has the same roots as f ,
but with multiplicity 1.

+ Another way to compute f /gcd(f , f ′) . . .

+ Fast algorithm: Õ(d).
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Real roots of univariate polynomials

Let f = xd + fd−1x
d−1 + · · ·+ f0 ∈ R[x ].

1 Compute a generic sequence (hi )0≤i≤2d−2 such that

- hd+j = −fd−1hd−j−1 − · · · − f0 hj and
- Hf ,< = (hi+j)0≤i,j≤d−1 < 0;

2 Compute the kernel of Hf ,<.

+ The polynomial of smallest degree of kerHf ,< has the same real roots
as f , with multiplicity 1.

+ Numerical algorithm, no good complexity bound yet;
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Example:

I Take f = x4 − x3 − x + 1 = (x − 1)2(x2 + x + 1).

I Compute a linear form Λ such that Λ(x4) = Λ(x3) + Λ(x)− Λ(1),
Λ(x5) = Λ(x3) + Λ(x2)− Λ(1), Λ(x6) = 2 Λ(x3)− Λ(1), . . .

HΛ :=

 1 a b c
a b c c + a− 1
b c c + a− 1 c + b − 1
c c + a− 1 c + b − 1 2 c − 1

 .

where a = Λ(x), b = Λ(x2), c = Λ(x3).
I Find Λ such that HΛ < 0:

HΛ =

 1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1


I Compute its kernel: 〈x − 1, x2 − x , x3 − x2, . . .〉.
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Solving exponential polynomials

Given f (u1, . . . , un) =
∑r

i=1 λie
u1γi,1+···+unγi,n =

∑r
i=1 λiζ

u1

i,1 · · · ζ
un
i,n (ζi,j = eγi,j ),

find the points (ζi ,1, . . . , ζi ,n) ∈ Cn and λi ∈ C for i = 1 . . . , r .

1 Find sets of monomials B1 =
{

xβ1 , . . . , xβr
}

,

B2 =
{

xβ
′
1 , . . . , xβ

′
r

}
= {1, x1, x2, . . .} ⊂ Nn s.t.

HB1,B2

f =
(
f
(
βi + β′j

))
16i ,j6r

is invertible;

2 Compute the generalize eigenvalues ζi ,1 and eigenvectors vi of

(HB1,x1 B2

f ,HB1,B2

f );

3 Deduce from wi = HB1,B2

f vi = wi ,1 [1, ζi ,1, ζi ,2, . . .] the coordinates
ζi ,1, . . . , ζi ,n of the “roots”.

(Generalized Prony’s method)
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Example

I Let f (u1, u2) = 1 + 2u1+u2 + 3u2 .

I Take B = {1, x1, x2} (or {(0, 0), (1, 0), (0, 1)}).

HB,B
f =


f (0, 0) f (1, 0) f (0, 1)

f (1, 0) f (2, 0) f (1, 1)

f (0, 1) f (1, 1) f (0, 2)

 =


3 6 4

6 14 8

4 8 6

,

HB,x1B
f =


6 14 8

14 36 18

8 18 12

 .
I Compute the generalized eigenvectors for the eigenvalues (1, 2, 3)

V =


2 −1 0

−1/2 0 1/2

−1/2 1 −1/2

 and HB,B
f V =


1 1 1

1 2 3

1 2 1

 .
I This yields the roots (1, 1), (2, 2), (3, 1).
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Real radical computation
Let F = {f1, . . . , fs} ⊂ R[x].
Let S ⊂ R = R[x] with 1 ∈ S , G ⊆ 〈S · S〉, and

LS ,G ,< := {Λ ∈ 〈S · S〉∗ | Λ(g) = 0, ∀g ∈ G and Λ(p2) ≥ 0, ∀p ∈ S}.

Repeat

1 Compute a rewriting family G ⊂ (F ) and choose S in a basis for G ;

2 Compute a generic element Λ∗ of LS ,G ,<;

3 Compute kerHS ,S
Λ∗ and add its generators to F ;

4 Update the rewriting family G of F ;

until kerHΛ∗ = {0} and G is a border basis for B = S .

+ Computation of Λ∗ by solving of a SDP problem by an interior point
method (SeDuMi, CSDP, SDPA, ...)
+ Applies for zero-dimensional real radical.
+ Output a border basis of R

√
(F ).

B. Mourrain Moment matrices for root finding 18 / 20



Real radical computation
Let F = {f1, . . . , fs} ⊂ R[x].
Let S ⊂ R = R[x] with 1 ∈ S , G ⊆ 〈S · S〉, and

LS ,G ,< := {Λ ∈ 〈S · S〉∗ | Λ(g) = 0, ∀g ∈ G and Λ(p2) ≥ 0, ∀p ∈ S}.

Repeat

1 Compute a rewriting family G ⊂ (F ) and choose S in a basis for G ;

2 Compute a generic element Λ∗ of LS ,G ,<;

3 Compute kerHS ,S
Λ∗ and add its generators to F ;

4 Update the rewriting family G of F ;

until kerHΛ∗ = {0} and G is a border basis for B = S .

+ Computation of Λ∗ by solving of a SDP problem by an interior point
method (SeDuMi, CSDP, SDPA, ...)
+ Applies for zero-dimensional real radical.
+ Output a border basis of R

√
(F ).

B. Mourrain Moment matrices for root finding 18 / 20



Real radical computation
Let F = {f1, . . . , fs} ⊂ R[x].
Let S ⊂ R = R[x] with 1 ∈ S , G ⊆ 〈S · S〉, and

LS ,G ,< := {Λ ∈ 〈S · S〉∗ | Λ(g) = 0, ∀g ∈ G and Λ(p2) ≥ 0, ∀p ∈ S}.

Repeat

1 Compute a rewriting family G ⊂ (F ) and choose S in a basis for G ;

2 Compute a generic element Λ∗ of LS ,G ,<;

3 Compute kerHS ,S
Λ∗ and add its generators to F ;

4 Update the rewriting family G of F ;

until kerHΛ∗ = {0} and G is a border basis for B = S .

+ Computation of Λ∗ by solving of a SDP problem by an interior point
method (SeDuMi, CSDP, SDPA, ...)

+ Applies for zero-dimensional real radical.
+ Output a border basis of R

√
(F ).

B. Mourrain Moment matrices for root finding 18 / 20



Real radical computation
Let F = {f1, . . . , fs} ⊂ R[x].
Let S ⊂ R = R[x] with 1 ∈ S , G ⊆ 〈S · S〉, and

LS ,G ,< := {Λ ∈ 〈S · S〉∗ | Λ(g) = 0, ∀g ∈ G and Λ(p2) ≥ 0, ∀p ∈ S}.

Repeat

1 Compute a rewriting family G ⊂ (F ) and choose S in a basis for G ;

2 Compute a generic element Λ∗ of LS ,G ,<;

3 Compute kerHS ,S
Λ∗ and add its generators to F ;

4 Update the rewriting family G of F ;

until kerHΛ∗ = {0} and G is a border basis for B = S .

+ Computation of Λ∗ by solving of a SDP problem by an interior point
method (SeDuMi, CSDP, SDPA, ...)
+ Applies for zero-dimensional real radical.

+ Output a border basis of R
√

(F ).
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Bezoutian

I f0, f1, . . . , fn ∈ R = K[x1, . . . , xn] = K[x].

I R ⊗ R = K[x1, . . . , xn, y1, . . . , yn] = K[x, y].

I X(0) = (x1, . . . , xn), X(1) = (y1, x2 . . . , xn), . . ., X(n) = (y1, . . . , yn).

I ∂i (P) =
P(X(i))−P(X(i−1))

yi−xi .

Bezoutian polynomial:

Θf0,f1,...,fn =

∣∣∣∣∣∣∣
f0(X(0)) ∂1(f0) · · · ∂n(f0)

...
...

...
fn(X(0)) ∂1(fn) · · · ∂n(fn)

∣∣∣∣∣∣∣ =
∑
α,β

θα,β xαyβ

Bezoutian matrix: Bf0,...,fn = Bf0 = (θα,β)α,β.
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Reduction

Apply the pencil reduction algorithm applied to [B1,Bx1 , . . . ,Bxn ] in order
to obtain matrices

[∆0,∆1, . . . ,∆n]

such that

- ∆0 inversible,

- ∆i (x, y) ≡ xi ∆0(x, y) mod I (x) ≡ yi ∆0(x, y) mod I (y).

Let I0 be the intersection of primary components of the isolated points of
I = (f1, . . . , fn).
+ Bezoutian conjecture: The matrices Mi = ∆−1

0 ∆i are the matrices of
multiplication by xi in the basis B of R/I0 where B is the set of monomials
indexing the columns of ∆0.
(conjecture in [C’95], proved under some hypothesis on B in [M’05]).
+ The flat extension theorem applies to a τ ∈ R∗ such that Hτ = ∆0

(another proof of the conjecture).
+ The linear form τ̃ extending τ is the residue of f1, . . . , fn.
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