Moment matrices for root finding

B. Mourrain GALAAD, INRIA Méditerranée, Sophia Antipolis Bernard.Mourrain@inria.fr

> GEOLMI 10-14 Septembre

> > ◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- ▶ K[x₁,...,x_n] = K[x] = R the multivariate polynomial ring over the field K.
- (f₁,..., f_s) = I the ideal generated by the polynomials f₁,..., f_s to solve.

- ▶ K[x₁,...,x_n] = K[x] = R the multivariate polynomial ring over the field K.
- (f₁,..., f_s) = I the ideal generated by the polynomials f₁,..., f_s to solve.

Objective: construct

- $A \subset R$ described by a basis B,
- ▶ a **projection** $\pi : R \to A$ such that the following sequence is exact:

 $0 \to I \to R \xrightarrow{\pi} A \to 0.$

▲日 ▶ ▲冊 ▶ ▲ 田 ▶ ▲ 田 ▶ ● ● ● ● ●

- ▶ K[x₁,...,x_n] = K[x] = R the multivariate polynomial ring over the field K.
- (f₁,..., f_s) = I the ideal generated by the polynomials f₁,..., f_s to solve.

Objective: construct

- $A \subset R$ described by a basis B,
- a projection $\pi: R \to A$ such that the following sequence is exact:

 $0 \to I \to R \xrightarrow{\pi} A \to 0.$

Then
$$R = A \oplus I$$
 and $\mathcal{A} = R/I \sim A = \operatorname{im} \pi$, $I = \ker \pi$.
For $p \in R$, $\pi(p) \in A$ is the **normal form** of p .

▲日 ▶ ▲冊 ▶ ▲ 田 ▶ ▲ 田 ▶ ● ● ● ● ●

- ▶ K[x₁,...,x_n] = K[x] = R the multivariate polynomial ring over the field K.
- (f₁,..., f_s) = I the ideal generated by the polynomials f₁,..., f_s to solve.

Objective: construct

- $A \subset R$ described by a basis B,
- a projection $\pi: R \to A$ such that the following sequence is exact:

 $0 \to I \to R \xrightarrow{\pi} A \to 0.$

Then $R = A \oplus I$ and $A = R/I \sim A = \operatorname{im} \pi$, $I = \ker \pi$. For $p \in R$, $\pi(p) \in A$ is the normal form of p. Normal form algorithms: Gröbner basis, H-basis, Janet basis, Border basis ...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へぐ

B. Mourrain

イロト 不得 トイヨト イヨト 二日

Theorem

Let $d \ge 2$, let B be a subset of \mathcal{M} connected to 1, let $\pi : \langle B^+ \rangle_{\le d} \to \langle B \rangle_{\le d}$ be a projection and let F be the rewriting family of π .

The following conditions are equivalent:

$$(M_i \circ M_j - M_j \circ M_i)_{|\langle B \rangle_{\leq d-2}} = 0 \text{ for } 1 \leq i < j \leq n,$$

2 there exists a unique projection $\tilde{\pi} : R_{\leq d} \to \langle B \rangle_{\leq d}$ such that the restriction of $\tilde{\pi}$ to $\langle B^+ \rangle_{\leq d}$ is π and ker $\tilde{\pi} = \langle F^{\langle \leq d \rangle} \rangle$,

イロト 不得 トイヨト イヨト 二日

Theorem

Let $d \ge 2$, let B be a subset of \mathcal{M} connected to 1, let $\pi : \langle B^+ \rangle_{\le d} \to \langle B \rangle_{\le d}$ be a projection and let F be the rewriting family of π .

The following conditions are equivalent:

$$\ \, (M_i \circ M_j - M_j \circ M_i)_{|\langle B \rangle_{\leq d-2}} = 0 \ \, \textit{for} \ \, 1 \leq i < j \leq n,$$

2 there exists a unique projection π̃: R_{≤d} → ⟨B⟩_{≤d} such that the restriction of π̃ to ⟨B⁺⟩_{≤d} is π and ker π̃ = ⟨F^{⟨≤d⟩}⟩,

Can be checked easily by reducing the commutation polynomials.

B. Mourrain

Theorem

Let $d \ge 2$, let B be a subset of \mathcal{M} connected to 1, let $\pi : \langle B^+ \rangle_{\le d} \to \langle B \rangle_{\le d}$ be a projection and let F be the rewriting family of π .

The following conditions are equivalent:

$$\ \, (M_i \circ M_j - M_j \circ M_i)_{|\langle B \rangle_{\leq d-2}} = 0 \ \, \textit{for} \ \, 1 \leq i < j \leq n,$$

2 there exists a unique projection π̃: R_{≤d} → ⟨B⟩_{≤d} such that the restriction of π̃ to ⟨B⁺⟩_{≤d} is π and ker π̃ = ⟨F^{⟨≤d⟩}⟩,

Solution checked easily by reducing the **commutation polynomials**. Solution Border basis iff (1) applies for any $d \ge 2$.

B. Mourrain

Recovering the roots by eigenvector computation

Recovering the roots by eigenvector computation Hypothesis: $\mathcal{V}_{\mathbb{K}}(I) = \{\zeta_1, \dots, \zeta_r\} \Leftrightarrow \mathcal{A} = \mathbb{K}[\mathbf{x}]/I$ of dimension $D < \infty$

over \mathbb{K} .

Operators of multiplication:

Recovering the roots by eigenvector computation Hypothesis: $\mathcal{V}_{\overline{\mathbb{K}}}(I) = \{\zeta_1, \dots, \zeta_r\} \Leftrightarrow \mathcal{A} = \mathbb{K}[\mathbf{x}]/I$ of dimension $D < \infty$ over \mathbb{K} .

Operators of multiplication:

Their representation in the basis $B = \{b_1, \ldots, b_D\}$ of A:

$$M_a = [\pi(a b_j)_i]_{1 \le i,j \le D}, \quad M_a^t = [\pi(a b_i)_j]_{1 \le i,j \le D}.$$

(日)

Recovering the roots by eigenvector computation Hypothesis: $\mathcal{V}_{\mathbb{K}}(I) = \{\zeta_1, \dots, \zeta_r\} \Leftrightarrow \mathcal{A} = \mathbb{K}[\mathbf{x}]/I$ of dimension $D < \infty$ over \mathbb{K} .

Operators of multiplication:

Their representation in the basis $B = \{b_1, \ldots, b_D\}$ of A:

$$M_{\mathsf{a}} = [\pi(\mathsf{a}\,\mathsf{b}_j)_i]_{1 \leq i,j \leq D}, \quad M_{\mathsf{a}}^t = [\pi(\mathsf{a}\,\mathsf{b}_i)_j]_{1 \leq i,j \leq D}.$$

Theorem

- The eigenvalues of M_a are $\{a(\zeta_1), \ldots, a(\zeta_r)\}$.
- The eigenvectors of all $(M_a^t)_{a \in \mathcal{A}}$ are (up to a scalar) $\mathbf{1}_{\zeta_i} : p \mapsto p(\zeta_i)$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ●

Recovering the roots by eigenvector computation Hypothesis: $\mathcal{V}_{\mathbb{K}}(I) = \{\zeta_1, \dots, \zeta_r\} \Leftrightarrow \mathcal{A} = \mathbb{K}[\mathbf{x}]/I$ of dimension $D < \infty$ over \mathbb{K} .

Operators of multiplication:

Their representation in the basis $B = \{b_1, \ldots, b_D\}$ of A:

$$M_a = [\pi(a b_j)_i]_{1 \le i,j \le D}, \quad M_a^t = [\pi(a b_i)_j]_{1 \le i,j \le D}.$$

Theorem

- The eigenvalues of M_a are $\{a(\zeta_1), \ldots, a(\zeta_r)\}$.
- The eigenvectors of all $(M_a^t)_{a \in \mathcal{A}}$ are (up to a scalar) $\mathbf{1}_{\zeta_i} : p \mapsto p(\zeta_i)$.

In practice, take some *a* in $\langle x_1, \ldots, x_n \rangle$.

B. Mourrain

Moment matrices for root finding

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶ ▲□▶

B. Mourrain

 $\Box \text{ The dual de } \mathbb{K}[x] \text{ is } \mathbb{K}[x]^* = \{ \Lambda : \mathbb{K}[x] \to \mathbb{K}, \text{ linear } \}.$

The dual de $\mathbb{K}[\mathbf{x}]$ is $\mathbb{K}[\mathbf{x}]^* = \{\Lambda : \mathbb{K}[\mathbf{x}] \to \mathbb{K}, \text{ linear } \}.$

 $\square \mathbb{K}[[\mathbf{x}]]^* = \mathbb{K}[[\mathbf{d}_1, \ldots, \mathbf{d}_n]].$

$$\Lambda = \sum_{\alpha \in \mathbb{N}^n} \Lambda(\mathbf{x}^\alpha) \mathbf{d}^\alpha$$

where $(\mathbf{d}^{\alpha})_{\alpha \in \mathbb{N}^n}$ is the dual basis of $(\mathbf{x}^{\alpha})_{\alpha \in \mathbb{N}^n}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - つへぐ

 $\Box \text{ The dual de } \mathbb{K}[x] \text{ is } \mathbb{K}[x]^* = \{\Lambda : \mathbb{K}[x] \to \mathbb{K}, \text{ linear } \}.$

 $\square \mathbb{K}[[\mathbf{x}]]^* = \mathbb{K}[[\mathbf{d}_1, \ldots, \mathbf{d}_n]].$

$$\Lambda = \sum_{\alpha \in \mathbb{N}^n} \Lambda(\mathbf{x}^\alpha) \mathbf{d}^\alpha$$

where $(\mathbf{d}^{\alpha})_{\alpha \in \mathbb{N}^n}$ is the dual basis of $(\mathbf{x}^{\alpha})_{\alpha \in \mathbb{N}^n}$.

□ The $\mathbb{K}[\mathbf{x}]$ -module structure: $\forall a \in \mathbb{K}[\mathbf{x}], \forall \Lambda \in \mathbb{K}[\mathbf{x}]^*,$

$$a \cdot \Lambda : b \mapsto a \cdot \Lambda(b) = \Lambda(ab)$$

▲日 ▶ ▲冊 ▶ ▲ 田 ▶ ▲ 田 ▶ ● ● ● ● ●

 $\Box \text{ The dual de } \mathbb{K}[x] \text{ is } \mathbb{K}[x]^* = \{\Lambda : \mathbb{K}[x] \to \mathbb{K}, \text{ linear } \}.$

 $\square \mathbb{K}[[\mathbf{x}]]^* = \mathbb{K}[[\mathbf{d}_1, \ldots, \mathbf{d}_n]].$

$$\Lambda = \sum_{\alpha \in \mathbb{N}^n} \Lambda(\mathbf{x}^\alpha) \mathbf{d}^\alpha$$

where $(\mathbf{d}^{\alpha})_{\alpha \in \mathbb{N}^n}$ is the dual basis of $(\mathbf{x}^{\alpha})_{\alpha \in \mathbb{N}^n}$.

□ The $\mathbb{K}[\mathbf{x}]$ -module structure: $\forall a \in \mathbb{K}[\mathbf{x}], \forall \Lambda \in \mathbb{K}[\mathbf{x}]^*,$

$$a \cdot \Lambda : b \mapsto a \cdot \Lambda(b) = \Lambda(ab)$$

Example: $x_1 \cdot \mathbf{d}_1^{\alpha_1} \mathbf{d}_2^{\alpha_2} \cdots \mathbf{d}_n^{\alpha_n} = \mathbf{d}_1^{\alpha_1 - 1} \mathbf{d}_2^{\alpha_2} \cdots \mathbf{d}_n^{\alpha_n}$ if $\alpha_1 > 0$ and 0 otherwise.

B. Mourrain

Examples

- $p \mapsto p(\zeta)$ represented by the series $\mathbf{1}_{\zeta} = \sum_{\alpha \in \mathbb{N}^n} \zeta^{\alpha} \mathbf{d}^{\alpha}$.
- $p \mapsto \partial_1^{\alpha_1} \cdots \partial_n^{\alpha_n}(p)(0)$ represented by $\alpha! \mathbf{d}^{\alpha}$.
- $p \mapsto \text{coefficient of } x^{\alpha} \text{ in } \pi(p).$
- ► $p \mapsto \int_{\Omega} p \, d\mu$.

Our objective

Exploit the properties of the dual

$$\mathcal{A}^* = \{ \Lambda : \mathbb{K}[\mathbf{x}] \to \mathbb{K} \mid \Lambda(I) = 0 \} = I^{\perp}$$

of $\mathcal{A} = \mathbb{K}[\mathbf{x}]/I$ to find the roots $\mathcal{V}(I) = \{\zeta_1, \ldots, \zeta_r\}.$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Our objective

Exploit the properties of the dual

$$\mathcal{A}^* = \{ \Lambda : \mathbb{K}[\mathbf{x}] \to \mathbb{K} \mid \Lambda(I) = 0 \} = I^{\perp}$$

of $\mathcal{A} = \mathbb{K}[\mathbf{x}]/I$ to find the roots $\mathcal{V}(I) = \{\zeta_1, \ldots, \zeta_r\}.$

Outline

- **O** Properties
- **2** Applications

 For Λ ∈ E* where E = ⟨x^A⟩, the moments are Λ(x^α) ∈ K for α ∈ A ⊂ Nⁿ.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- For Λ ∈ E^{*} where E = ⟨x^A⟩, the moments are Λ(x^α) ∈ K for α ∈ A ⊂ Nⁿ.
- For E₁, E₂ such that E₁ · E₂ ⊂ E and Λ ∈ E^{*}, the associated truncated Hankel operator is

$$\begin{array}{rccc} H^{E_1,E_2}_{\Lambda}:E_1 & \to & E_2^* \\ p & \mapsto & p \cdot \Lambda \end{array}$$

where $p \cdot \Lambda : q \mapsto \Lambda(p q)$.

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ●

- For Λ ∈ E^{*} where E = ⟨x^A⟩, the moments are Λ(x^α) ∈ K for α ∈ A ⊂ Nⁿ.
- For E₁, E₂ such that E₁ · E₂ ⊂ E and Λ ∈ E^{*}, the associated truncated Hankel operator is

$$\begin{array}{rccc} H^{E_1,E_2}_{\Lambda}:E_1 & \to & E_2^*\\ p & \mapsto & p \cdot \Lambda \end{array}$$

where $p \cdot \Lambda : q \mapsto \Lambda(p q)$.

Its matrix in the monomial basis (x^α)_{α∈E1} and the dual basis (d^α)_{α∈E2} is the moment matrix:

$$[H^{E_1,E_2}_{\Lambda}] = (\Lambda(\mathbf{x}^{\alpha+\beta}))_{\alpha\in E_1,\beta\in E_2}$$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ●

- ► For $\Lambda \in E^*$ where $E = \langle \mathbf{x}^A \rangle$, the moments are $\Lambda(x^\alpha) \in \mathbb{K}$ for $\alpha \in A \subset \mathbb{N}^n$.
- For E₁, E₂ such that E₁ · E₂ ⊂ E and Λ ∈ E^{*}, the associated truncated Hankel operator is

$$\begin{array}{rccc} H^{E_1,E_2}_{\Lambda}:E_1 & \to & E_2^* \\ & p & \mapsto & p \cdot \Lambda \end{array}$$

where $p \cdot \Lambda : q \mapsto \Lambda(p q)$.

Its matrix in the monomial basis (x^α)_{α∈E1} and the dual basis (d^α)_{α∈E2} is the moment matrix:

$$[H^{E_1,E_2}_{\Lambda}] = (\Lambda(\mathbf{x}^{\alpha+\beta}))_{\alpha\in E_1,\beta\in E_2}$$

• If $E = \mathbb{K}[x_1, \dots, x_n]$, we define the **Hankel operator**:

$$H_{\Lambda}: \mathbb{K}[\mathbf{x}] \to \mathbb{K}[\mathbf{x}]^*$$

$$p \mapsto p \cdot \Lambda_{\text{restriction}} \in \mathbb{P}^{\times}$$

B. Mourrain

Moment matrices for root finding

8 / 20

Definition: Λ is supported on points if $I_{\Lambda} = \ker H_{\Lambda}$ is zero-dimensional.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - つへぐ

Definition: Λ is **supported on points** if $I_{\Lambda} = \ker H_{\Lambda}$ is zero-dimensional. **Properties:**

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Definition: Λ is **supported on points** if $I_{\Lambda} = \ker H_{\Lambda}$ is zero-dimensional. **Properties:**

• A is supported on points iff $\operatorname{rank} H_{\Lambda} = r < \infty$.

Definition: A is supported on points if $I_{A} = \ker H_{A}$ is zero-dimensional. **Properties:**

- A is supported on points iff $\operatorname{rank} H_{\Lambda} = r < \infty$.
- \blacktriangleright If Λ is supported on points, then

$$\Lambda: p \mapsto \sum_{i=1}^{r'} \mathbf{1}_{\zeta_i} \cdot \theta_i(\partial_{x_1}, \ldots, \partial_{x_n})(p)$$

for some $\zeta_i \in \mathbb{C}^n$ and some differential polynomials θ_i with • $r = \sum_{i=1}^{r'} \dim(\langle \partial_{\partial}^{\alpha}(\theta_i) \rangle)$

- $V_{\mathbb{C}}(I_{\Lambda}) = \{\zeta_1, \ldots, \zeta_{r'}\}.$

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ● ● ●

Definition: Λ is **supported on points** if $I_{\Lambda} = \ker H_{\Lambda}$ is zero-dimensional. **Properties:**

- A is supported on points iff $\operatorname{rank} H_{\Lambda} = r < \infty$.
- If Λ is supported on points, then

$$\Lambda: p \mapsto \sum_{i=1}^{r'} \mathbf{1}_{\zeta_i} \cdot \theta_i(\partial_{x_1}, \ldots, \partial_{x_n})(p)$$

for some $\zeta_i \in \mathbb{C}^n$ and some differential polynomials θ_i with

- $r = \sum_{i=1}^{r'} \dim(\langle \partial_{\partial}^{\alpha}(\theta_i) \rangle)$
- $V_{\mathbb{C}}(I_{\Lambda}) = \{\zeta_1, \ldots, \zeta_{r'}\}.$

▶ If Λ is supported on points, then $A_{\Lambda} = R/I_{\Lambda}$ is a Gorenstein algebra:

▲日▶ ▲□▶ ▲三▶ ▲三▶ 三日 りゅつ

Definition: Λ is **supported on points** if $I_{\Lambda} = \ker H_{\Lambda}$ is zero-dimensional. **Properties:**

- A is supported on points iff $\operatorname{rank} H_{\Lambda} = r < \infty$.
- If Λ is supported on points, then

$$\Lambda: p \mapsto \sum_{i=1}^{r'} \mathbf{1}_{\zeta_i} \cdot \theta_i(\partial_{x_1}, \ldots, \partial_{x_n})(p)$$

for some $\zeta_i \in \mathbb{C}^n$ and some differential polynomials θ_i with

- $r = \sum_{i=1}^{r'} \dim(\langle \partial_{\partial}^{\alpha}(\theta_i) \rangle)$
- $V_{\mathbb{C}}(I_{\Lambda}) = \{\zeta_1, \ldots, \zeta_{r'}\}.$
- If Λ is supported on points, then $A_{\Lambda} = R/I_{\Lambda}$ is a Gorenstein algebra:
 - A^{*}_Λ = A_Λ · Λ (free module of rank 1).
 (a, b) → Λ(ab) is non-degenerate in A_Λ.
 Hom_{A_Λ}(A^{*}_Λ, A_Λ) = D · A_Λ where D = ∑^r_{i=1} b_i ⊗ ω_i for (b_i)_{1≤i≤r} a basis of A_Λ and (ω_i)_{1≤i≤r} its dual basis for Λ.

Positive linear forms

Definition: $\Lambda \in \mathbb{R}[\mathbf{x}]^*$ is **positive** if $\Lambda(p^2) \ge 0$ for all $p \in \mathbb{R}[\mathbf{x}]$.

Positive linear forms

Definition: $\Lambda \in \mathbb{R}[\mathbf{x}]^*$ is **positive** if $\Lambda(p^2) \ge 0$ for all $p \in \mathbb{R}[\mathbf{x}]$.

Properties:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@
Positive linear forms

Definition: $\Lambda \in \mathbb{R}[\mathbf{x}]^*$ is **positive** if $\Lambda(p^2) \ge 0$ for all $p \in \mathbb{R}[\mathbf{x}]$.

Properties:

• $\Lambda \in \mathbb{R}[\mathbf{x}]^*$ is positive iff $H_{\Lambda} \geq 0$.

Positive linear forms

Definition: $\Lambda \in \mathbb{R}[\mathbf{x}]^*$ is **positive** if $\Lambda(p^2) \ge 0$ for all $p \in \mathbb{R}[\mathbf{x}]$.

Properties:

- $\Lambda \in \mathbb{R}[\mathbf{x}]^*$ is positive iff $H_{\Lambda} \geq 0$.
- If $\Lambda \succeq 0$ then $I_{\Lambda} = \ker H_{\Lambda}$ is a real radical ideal.

Positive linear forms

Definition: $\Lambda \in \mathbb{R}[\mathbf{x}]^*$ is **positive** if $\Lambda(p^2) \ge 0$ for all $p \in \mathbb{R}[\mathbf{x}]$.

Properties:

- $\Lambda \in \mathbb{R}[\mathbf{x}]^*$ is positive iff $H_{\Lambda} \geq 0$.
- If $\Lambda \succeq 0$ then $I_{\Lambda} = \ker H_{\Lambda}$ is a real radical ideal.
- A supported on points and positive iff Λ = Σ^r_{i=1} γ_i 1_{ζi} with γ_i > 0 and ζ_i are distinct points of ℝⁿ.

Flat extension

・ロ・・母・・ヨ・・ヨ・ うへぐ

Flat extension

Theorem (LM'09, BCMT'10, BBCM'11)

Let B, B' be connected to 1 of size r and $\Lambda \in \langle B^+ \cdot B'^+ \rangle^*$. The following conditions are equivalent:

• there exists a unique element $\tilde{\Lambda} \in R^*$ which extends Λ and such that B and B' are basis of $A_{\Lambda} = R/I_{\Lambda}$.

$$\operatorname{rank} H^{B,B'}_{\Lambda} = \operatorname{rank} H^{B^+,B'^+}_{\Lambda} = r.$$

• $H^{B,B'}_{\Lambda}$ is invertible and the matrices $M_i := H^{B,x_iB'}_{\Lambda}(H^{B,B'}_{\Lambda})^{-1}$ satisfy

$$M_i \circ M_j = M_j \circ M_i \ (1 \leq i, j \leq n).$$

In this case, $\tilde{\Lambda}$ is supported on points.

2

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 ののの

Flat extension

Theorem (LM'09, BCMT'10, BBCM'11)

Let B, B' be connected to 1 of size r and $\Lambda \in \langle B^+ \cdot B'^+ \rangle^*$. The following conditions are equivalent:

• there exists a unique element $\tilde{\Lambda} \in R^*$ which extends Λ and such that B and B' are basis of $\mathcal{A}_{\Lambda} = R/I_{\Lambda}$.

$$\operatorname{rank} H^{B,B'}_{\Lambda} = \operatorname{rank} H^{B^+,B'^+}_{\Lambda} = r.$$

• $H^{B,B'}_{\Lambda}$ is invertible and the matrices $M_i := H^{B,x_iB'}_{\Lambda}(H^{B,B'}_{\Lambda})^{-1}$ satisfy

$$M_i \circ M_j = M_j \circ M_i \ (1 \leq i, j \leq n).$$

In this case, $\tilde{\Lambda}$ is supported on points.

If $H^{B,B'}_{\Lambda} ≥ 0$ then $\tilde{\Lambda} ≥ 0$.

B. Mourrain

2

Applications

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Let
$$f = x^d + f_{d-1}x^{d-1} + \dots + f_0 \in \mathbb{C}[x].$$

Compute a generic sequence (h_i)_{0≤i≤3d-3} such that h_{d+j} = -f_{d-1}h_{d-j-1} - ··· - f₀ h_j.
Compute (h'_i)_{0≤i≤2d-2} = f' · (h_j) such that h'_j = ∑^d_{i=1} i h_{j+i-1} f_i.
Compute the kernel of

$$H_{f'} = (h'_{i+j})_{0 \le i,j \le d-1}.$$

イロト 不得 トイヨト イヨト 二日

Let
$$f = x^d + f_{d-1}x^{d-1} + \dots + f_0 \in \mathbb{C}[x].$$

 Compute a generic sequence (h_i)_{0≤i≤3d-3} such that h_{d+j} = -f_{d-1}h_{d-j-1} - · · · - f₀ h_j.
 Compute (h'_i)_{0≤i≤2d-2} = f' · (h_j) such that h'_j = ∑^d_{i=1} i h_{j+i-1} f_i.
 Compute the kernel of

$$H_{f'} = (h'_{i+j})_{0 \le i,j \le d-1}.$$

The polynomial of smallest degree of ker $H_{f'}$ has the same roots as f, but with multiplicity 1.

イロト 不得 トイヨト イヨト 二日

Let
$$f = x^d + f_{d-1}x^{d-1} + \dots + f_0 \in \mathbb{C}[x].$$

Compute a generic sequence (h_i)_{0≤i≤3d-3} such that h_{d+j} = -f_{d-1}h_{d-j-1} - ··· - f₀ h_j.
Compute (h'_i)_{0≤i≤2d-2} = f' · (h_j) such that h'_j = ∑^d_{i=1} i h_{j+i-1} f_i.
Compute the kernel of

$$H_{f'} = (h'_{i+j})_{0 \le i,j \le d-1}.$$

The polynomial of smallest degree of ker $H_{f'}$ has the same roots as f, but with multiplicity 1.

Solution Another way to compute $f/gcd(f, f') \dots$

イロト 不得 とうせい かほとう ほ

Let
$$f = x^d + f_{d-1}x^{d-1} + \dots + f_0 \in \mathbb{C}[x].$$

Compute a generic sequence (h_i)_{0≤i≤3d-3} such that h_{d+j} = -f_{d-1}h_{d-j-1} - ··· - f₀ h_j.
Compute (h'_i)_{0≤i≤2d-2} = f' · (h_j) such that h'_j = ∑^d_{i=1} i h_{j+i-1} f_i.
Compute the kernel of

$$H_{f'} = (h'_{i+j})_{0 \le i,j \le d-1}.$$

The polynomial of smallest degree of ker $H_{f'}$ has the same roots as f, but with multiplicity 1.

Solution Another way to compute $f/gcd(f, f') \dots$

Section Fast algorithm: $\tilde{\mathcal{O}}(d)$.

Real roots of univariate polynomials

Let
$$f = x^d + f_{d-1}x^{d-1} + \dots + f_0 \in \mathbb{R}[x]$$
.

• Compute a generic sequence $(h_i)_{0 \le i \le 2d-2}$ such that

-
$$h_{d+j} = -f_{d-1}h_{d-j-1} - \cdots - f_0 h_j$$
 and

-
$$H_{f,\succcurlyeq} = (h_{i+j})_{0 \leq i,j \leq d-1} \succcurlyeq 0;$$

2 Compute the kernel of $H_{f,\geq}$.

3

イロト 不得 とう アイロト

Real roots of univariate polynomials

Let
$$f = x^d + f_{d-1}x^{d-1} + \dots + f_0 \in \mathbb{R}[x]$$
.

• Compute a generic sequence $(h_i)_{0 \le i \le 2d-2}$ such that

-
$$h_{d+j} = -f_{d-1}h_{d-j-1} - \cdots - f_0 h_j$$
 and

-
$$H_{f,\succcurlyeq} = (h_{i+j})_{0 \leq i,j \leq d-1} \succcurlyeq 0;$$

2 Compute the kernel of $H_{f,\geq}$.

The polynomial of smallest degree of ker $H_{f,\geq}$ has the same real roots as f, with multiplicity 1.

イロト 不得 トイヨト イヨト 二日

Real roots of univariate polynomials

Let
$$f = x^d + f_{d-1}x^{d-1} + \dots + f_0 \in \mathbb{R}[x]$$
.

• Compute a generic sequence $(h_i)_{0 \le i \le 2d-2}$ such that $h_{d+i} = -f_{d-1}h_{d-i-1} - \cdots - f_0h_i$ and

-
$$h_{d+j} = -t_{d-1}h_{d-j-1} - \dots - t_0 h_j$$
 an

-
$$H_{f,\succcurlyeq} = (h_{i+j})_{0\leq i,j\leq d-1} \succcurlyeq 0;$$

2 Compute the kernel of $H_{f,\geq}$.

The polynomial of smallest degree of ker $H_{f,\succeq}$ has the same real roots as f, with multiplicity 1.

Numerical algorithm, no good complexity bound yet;

イロト 不得 トイヨト イヨト 二日

► Take
$$f = x^4 - x^3 - x + 1 = (x - 1)^2(x^2 + x + 1)$$
.

◆□ → ◆□ → ▲目 → ▲目 → ● ●

► Take
$$f = x^4 - x^3 - x + 1 = (x - 1)^2(x^2 + x + 1)$$
.
► Compute a linear form Λ such that $\Lambda(x^4) = \Lambda(x^3) + \Lambda(x) - \Lambda(1)$,
 $\Lambda(x^5) = \Lambda(x^3) + \Lambda(x^2) - \Lambda(1)$, $\Lambda(x^6) = 2\Lambda(x^3) - \Lambda(1)$, ...

$$H_{\Lambda} := \begin{pmatrix} 1 & a & b & c \\ a & b & c & c+a-1 \\ b & c & c+a-1 & c+b-1 \\ c & c+a-1 & c+b-1 & 2c-1 \end{pmatrix}.$$

where $a = \Lambda(x), b = \Lambda(x^2), c = \Lambda(x^3).$

► Take
$$f = x^4 - x^3 - x + 1 = (x - 1)^2(x^2 + x + 1)$$
.
► Compute a linear form Λ such that $\Lambda(x^4) = \Lambda(x^3) + \Lambda(x) - \Lambda(1)$,
 $\Lambda(x^5) = \Lambda(x^3) + \Lambda(x^2) - \Lambda(1)$, $\Lambda(x^6) = 2\Lambda(x^3) - \Lambda(1)$, ...

$$H_{\Lambda} := \begin{pmatrix} 1 & a & b & c \\ a & b & c & c+a-1 \\ b & c & c+a-1 & c+b-1 \\ c & c+a-1 & c+b-1 & 2c-1 \end{pmatrix}.$$

where
$$a = \Lambda(x), b = \Lambda(x^2), c = \Lambda(x^3)$$
.
Find Λ such that $H_{\Lambda} \geq 0$:

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□▶ ▲□▶

► Take
$$f = x^4 - x^3 - x + 1 = (x - 1)^2(x^2 + x + 1)$$
.
► Compute a linear form Λ such that $\Lambda(x^4) = \Lambda(x^3) + \Lambda(x) - \Lambda(1)$,
 $\Lambda(x^5) = \Lambda(x^3) + \Lambda(x^2) - \Lambda(1)$, $\Lambda(x^6) = 2\Lambda(x^3) - \Lambda(1)$, ...

$$H_{\Lambda} := \left(\begin{array}{cccc} 1 & a & b & c \\ a & b & c & c+a-1 \\ b & c & c+a-1 & c+b-1 \\ c & c+a-1 & c+b-1 & 2c-1 \end{array} \right).$$

where
$$a = \Lambda(x), b = \Lambda(x^2), c = \Lambda(x^3)$$
.
Find Λ such that $H_{\Lambda} \succeq 0$:

• Compute its kernel: $\langle x - 1, x^2 - x, x^3 - x^2, \ldots \rangle$.

B. Mourrain

Moment matrices for root finding

◆□ → ◆□ → ▲目 → ▲目 → ● ●

Given $f(u_1, \ldots, u_n) = \sum_{i=1}^r \lambda_i e^{u_1 \gamma_{i,1} + \cdots + u_n \gamma_{i,n}} = \sum_{i=1}^r \lambda_i \zeta_{i,1}^{u_1} \cdots \zeta_{i,n}^{u_n} (\zeta_{i,j} = e^{\gamma_{i,j}}),$ find the points $(\zeta_{i,1}, \ldots, \zeta_{i,n}) \in \mathbb{C}^n$ and $\lambda_i \in \mathbb{C}$ for $i = 1 \ldots, r$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Given $f(u_1, \ldots, u_n) = \sum_{i=1}^r \lambda_i e^{u_1 \gamma_{i,1} + \cdots + u_n \gamma_{i,n}} = \sum_{i=1}^r \lambda_i \zeta_{i,1}^{u_1} \cdots \zeta_{i,n}^{u_n} (\zeta_{i,j} = e^{\gamma_{i,j}}),$ find the points $(\zeta_{i,1}, \ldots, \zeta_{i,n}) \in \mathbb{C}^n$ and $\lambda_i \in \mathbb{C}$ for $i = 1 \ldots, r$.

• Find sets of monomials
$$B_1 = \{\mathbf{x}^{\beta_1}, \dots, \mathbf{x}^{\beta_r}\},\ B_2 = \{\mathbf{x}^{\beta'_1}, \dots, \mathbf{x}^{\beta'_r}\} = \{1, x_1, x_2, \dots\} \subset \mathbb{N}^n \text{ s.t.}\ H_f^{B_1, B_2} = \left(f\left(\beta_i + \beta'_j\right)\right)_{1 \leq i, j \leq r} \text{ is invertible;}$$

Given $f(u_1, \ldots, u_n) = \sum_{i=1}^r \lambda_i e^{u_1 \gamma_{i,1} + \cdots + u_n \gamma_{i,n}} = \sum_{i=1}^r \lambda_i \zeta_{i,1}^{u_1} \cdots \zeta_{i,n}^{u_n} (\zeta_{i,j} = e^{\gamma_{i,j}}),$ find the points $(\zeta_{i,1}, \ldots, \zeta_{i,n}) \in \mathbb{C}^n$ and $\lambda_i \in \mathbb{C}$ for $i = 1 \ldots, r$.

• Find sets of monomials
$$B_1 = \{\mathbf{x}^{\beta_1}, \dots, \mathbf{x}^{\beta_r}\},\ B_2 = \{\mathbf{x}^{\beta'_1}, \dots, \mathbf{x}^{\beta'_r}\} = \{1, x_1, x_2, \dots\} \subset \mathbb{N}^n \text{ s.t.}\ H_f^{B_1, B_2} = \left(f\left(\beta_i + \beta'_j\right)\right)_{1 \leq i, j \leq r} \text{ is invertible;}$$

 $\label{eq:compute the generalize eigenvalues } \zeta_{i,1} \text{ and eigenvectors } \mathbf{v}_i \text{ of } \\ (H_f^{B_1,x_1\,B_2},H_f^{B_1,B_2});$

Given $f(u_1, \ldots, u_n) = \sum_{i=1}^r \lambda_i e^{u_1 \gamma_{i,1} + \cdots + u_n \gamma_{i,n}} = \sum_{i=1}^r \lambda_i \zeta_{i,1}^{u_1} \cdots \zeta_{i,n}^{u_n} (\zeta_{i,j} = e^{\gamma_{i,j}}),$ find the points $(\zeta_{i,1}, \ldots, \zeta_{i,n}) \in \mathbb{C}^n$ and $\lambda_i \in \mathbb{C}$ for $i = 1 \ldots, r$.

• Find sets of monomials
$$B_1 = \{\mathbf{x}^{\beta_1}, \dots, \mathbf{x}^{\beta_r}\},\ B_2 = \{\mathbf{x}^{\beta'_1}, \dots, \mathbf{x}^{\beta'_r}\} = \{1, x_1, x_2, \dots\} \subset \mathbb{N}^n \text{ s.t.}\ H_f^{B_1, B_2} = \left(f\left(\beta_i + \beta'_j\right)\right)_{1 \leq i, j \leq r} \text{ is invertible;}$$

- 2 Compute the generalize eigenvalues $\zeta_{i,1}$ and eigenvectors \mathbf{v}_i of $(H_f^{B_1,x_1B_2}, H_f^{B_1,B_2});$
- **3** Deduce from $\mathbf{w}_i = H_f^{B_1, B_2} \mathbf{v}_i = \mathbf{w}_{i,1} [1, \zeta_{i,1}, \zeta_{i,2}, \ldots]$ the coordinates $\zeta_{i,1}, \ldots, \zeta_{i,n}$ of the "roots".

Given $f(u_1, \ldots, u_n) = \sum_{i=1}^r \lambda_i e^{u_1 \gamma_{i,1} + \cdots + u_n \gamma_{i,n}} = \sum_{i=1}^r \lambda_i \zeta_{i,1}^{u_1} \cdots \zeta_{i,n}^{u_n} (\zeta_{i,j} = e^{\gamma_{i,j}}),$ find the points $(\zeta_{i,1}, \ldots, \zeta_{i,n}) \in \mathbb{C}^n$ and $\lambda_i \in \mathbb{C}$ for $i = 1 \ldots, r$.

• Find sets of monomials
$$B_1 = \{\mathbf{x}^{\beta_1}, \dots, \mathbf{x}^{\beta_r}\},\ B_2 = \{\mathbf{x}^{\beta'_1}, \dots, \mathbf{x}^{\beta'_r}\} = \{1, x_1, x_2, \dots\} \subset \mathbb{N}^n \text{ s.t.}\ H_f^{B_1, B_2} = \left(f\left(\beta_i + \beta'_j\right)\right)_{1 \leq i, j \leq r} \text{ is invertible;}$$

- **2** Compute the generalize eigenvalues $\zeta_{i,1}$ and eigenvectors \mathbf{v}_i of $(H_f^{B_1,x_1B_2}, H_f^{B_1,B_2});$
- **3** Deduce from $\mathbf{w}_i = H_f^{B_1, B_2} \mathbf{v}_i = \mathbf{w}_{i,1} [1, \zeta_{i,1}, \zeta_{i,2}, \ldots]$ the coordinates $\zeta_{i,1}, \ldots, \zeta_{i,n}$ of the "roots".

(Generalized Prony's method)

B. Mourrain

► Let
$$f(u_1, u_2) = 1 + 2^{u_1 + u_2} + 3^{u_2}$$
.
► Take $B = \{1, x_1, x_2\}$ (or $\{(0, 0), (1, 0), (0, 1)\}$).
 $H_f^{B,B} = \begin{bmatrix} f(0, 0) & f(1, 0) & f(0, 1) \\ f(1, 0) & f(2, 0) & f(1, 1) \\ f(0, 1) & f(1, 1) & f(0, 2) \end{bmatrix} = \begin{bmatrix} 3 & 6 & 4 \\ 6 & 14 & 8 \\ 4 & 8 & 6 \end{bmatrix}$,
 $H_f^{B,x_1B} = \begin{bmatrix} 6 & 14 & 8 \\ 14 & 36 & 18 \\ 8 & 18 & 12 \end{bmatrix}$.

► Compute the generalized eigenvectors for the eigenvalues (1, 2, 3) $V = \begin{bmatrix} 2 & -1 & 0 \\ -1/2 & 0 & 1/2 \\ -1/2 & 1 & -1/2 \end{bmatrix}$ and $H_f^{B,B}V = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 2 & 1 \end{bmatrix}$. ► This yields the roots (1, 1), (2, 2), (3, 1).

B. Mourrain

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Let $F = \{f_1, \ldots, f_s\} \subset \mathbb{R}[\mathbf{x}]$. Let $S \subset R = \mathbb{R}[\mathbf{x}]$ with $1 \in S$, $G \subseteq \langle S \cdot S \rangle$, and

 $\mathcal{L}_{\mathcal{S},\mathcal{G},\succcurlyeq} := \{\Lambda \in \langle \mathcal{S} \cdot \mathcal{S} \rangle^* \mid \Lambda(g) = 0, \ \forall g \in \mathcal{G} \ \text{and} \ \Lambda(p^2) \geq 0, \ \forall p \in \mathcal{S} \}.$

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ つへで

Let $F = \{f_1, \ldots, f_s\} \subset \mathbb{R}[\mathbf{x}]$. Let $S \subset R = \mathbb{R}[\mathbf{x}]$ with $1 \in S$, $G \subseteq \langle S \cdot S \rangle$, and

 $\mathcal{L}_{\mathcal{S},\mathcal{G},\succcurlyeq} := \{\Lambda \in \langle \mathcal{S} \cdot \mathcal{S} \rangle^* \mid \Lambda(g) = 0, \ \forall g \in \mathcal{G} \ \text{and} \ \Lambda(p^2) \geq 0, \ \forall p \in \mathcal{S} \}.$

Repeat

- **(**) Compute a rewriting family $G \subset (F)$ and choose S in a basis for G;
- **2** Compute a generic element Λ^* of $\mathcal{L}_{S,G,\succcurlyeq}$;
- Sompute ker $H^{S,S}_{\Lambda^*}$ and add its generators to F;
- Update the rewriting family G of F;

until ker $H_{\Lambda^*} = \{0\}$ and G is a border basis for B = S.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

Let $F = \{f_1, \ldots, f_s\} \subset \mathbb{R}[\mathbf{x}]$. Let $S \subset R = \mathbb{R}[\mathbf{x}]$ with $1 \in S$, $G \subseteq \langle S \cdot S \rangle$, and

 $\mathcal{L}_{S,G,\succcurlyeq} := \{\Lambda \in \langle S \cdot S \rangle^* \mid \Lambda(g) = 0, \ \forall g \in G \ \text{and} \ \Lambda(p^2) \geq 0, \ \forall p \in S \}.$

Repeat

- **(**) Compute a rewriting family $G \subset (F)$ and choose S in a basis for G;
- **2** Compute a generic element Λ^* of $\mathcal{L}_{S,G,\succcurlyeq}$;
- Sompute ker $H^{S,S}_{\Lambda^*}$ and add its generators to F;

• Update the rewriting family G of F;

until ker $H_{\Lambda^*} = \{0\}$ and G is a border basis for B = S.

Scomputation of $Λ^*$ by solving of a SDP problem by an interior point method (SeDuMi, CSDP, SDPA, ...)

Let $F = \{f_1, \ldots, f_s\} \subset \mathbb{R}[\mathbf{x}]$. Let $S \subset R = \mathbb{R}[\mathbf{x}]$ with $1 \in S$, $G \subseteq \langle S \cdot S \rangle$, and

 $\mathcal{L}_{\mathcal{S},\mathcal{G},\succcurlyeq}:=\{\Lambda\in\langle\mathcal{S}\cdot\mathcal{S}\rangle^*\mid\Lambda(g)=0,\,\,\forall g\in\mathcal{G}\,\,\mathrm{and}\,\,\Lambda(p^2)\geq0,\,\,\forall p\in\mathcal{S}\}.$

Repeat

- **(**) Compute a rewriting family $G \subset (F)$ and choose S in a basis for G;
- **2** Compute a generic element Λ^* of $\mathcal{L}_{S,G,\succcurlyeq}$;
- Sompute ker $H^{S,S}_{\Lambda^*}$ and add its generators to F;

Update the rewriting family G of F;

until ker $H_{\Lambda^*} = \{0\}$ and G is a border basis for B = S.

Computation of A* by solving of a SDP problem by an interior point method (SeDuMi, CSDP, SDPA, ...)
 Image Applies for zero-dimensional real radical.

Let $F = \{f_1, \ldots, f_s\} \subset \mathbb{R}[\mathbf{x}]$. Let $S \subset R = \mathbb{R}[\mathbf{x}]$ with $1 \in S$, $G \subseteq \langle S \cdot S \rangle$, and

 $\mathcal{L}_{S,G,\succcurlyeq} := \{\Lambda \in \langle S \cdot S \rangle^* \mid \Lambda(g) = 0, \ \forall g \in G \ \text{and} \ \Lambda(p^2) \geq 0, \ \forall p \in S \}.$

Repeat

- **O** Compute a rewriting family $G \subset (F)$ and choose S in a basis for G;
- **2** Compute a generic element Λ^* of $\mathcal{L}_{S,G,\succeq}$;
- Sompute ker $H^{S,S}_{\Lambda^*}$ and add its generators to F;

• Update the rewriting family G of F;

until ker $H_{\Lambda^*} = \{0\}$ and G is a border basis for B = S.

Computation of Λ^* by solving of a SDP problem by an interior point method (SeDuMi, CSDP, SDPA, ...) Applies for zero-dimensional real radical. Output a border basis of $\sqrt[\mathbb{R}]{(F)}$.

B. Mourrain

• $f_0, f_1, \ldots, f_n \in R = \mathbb{K}[x_1, \ldots, x_n] = \mathbb{K}[\mathbf{x}].$

◆□ → ◆□ → ▲目 → ▲目 → ◆○ ◆

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へぐ

Bezoutian polynomial:

$$\Theta_{f_0,f_1,\ldots,f_n} = \begin{vmatrix} f_0(X_{(0)}) & \partial_1(f_0) & \cdots & \partial_n(f_0) \\ \vdots & \vdots & & \vdots \\ f_n(X_{(0)}) & \partial_1(f_n) & \cdots & \partial_n(f_n) \end{vmatrix} = \sum_{\alpha,\beta} \theta_{\alpha,\beta} \mathbf{x}^{\alpha} \mathbf{y}^{\beta}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のQ@

Bezoutian polynomial:

$$\Theta_{f_0,f_1,\ldots,f_n} = \begin{vmatrix} f_0(X_{(0)}) & \partial_1(f_0) & \cdots & \partial_n(f_0) \\ \vdots & \vdots & & \vdots \\ f_n(X_{(0)}) & \partial_1(f_n) & \cdots & \partial_n(f_n) \end{vmatrix} = \sum_{\alpha,\beta} \theta_{\alpha,\beta} \mathbf{x}^{\alpha} \mathbf{y}^{\beta}$$

Bezoutian matrix: $B_{f_0,...,f_n} = B_{f_0} = (\theta_{\alpha,\beta})_{\alpha,\beta}$.

B. Mourrain

Moment matrices for root finding

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Reduction

Apply the pencil reduction algorithm applied to $[B_1, B_{x_1}, \ldots, B_{x_n}]$ in order to obtain matrices

$$[\Delta_0, \Delta_1, \ldots, \Delta_n]$$

such that

- Δ_0 inversible,
- $\Delta_i(\mathbf{x}, \mathbf{y}) \equiv x_i \Delta_0(\mathbf{x}, \mathbf{y}) \mod I(\mathbf{x}) \equiv y_i \Delta_0(\mathbf{x}, \mathbf{y}) \mod I(\mathbf{y}).$

イロト 不得 とうせい かほとう ほ

Reduction

Apply the pencil reduction algorithm applied to $[B_1, B_{x_1}, \ldots, B_{x_n}]$ in order to obtain matrices

$$[\Delta_0, \Delta_1, \ldots, \Delta_n]$$

such that

- Δ_0 inversible,
- $\Delta_i(\mathbf{x}, \mathbf{y}) \equiv x_i \Delta_0(\mathbf{x}, \mathbf{y}) \mod I(\mathbf{x}) \equiv y_i \Delta_0(\mathbf{x}, \mathbf{y}) \mod I(\mathbf{y}).$

Let I_0 be the intersection of primary components of the *isolated points* of $I = (f_1, \ldots, f_n)$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●

Reduction

Apply the pencil reduction algorithm applied to $[B_1, B_{x_1}, \ldots, B_{x_n}]$ in order to obtain matrices

$$[\Delta_0, \Delta_1, \ldots, \Delta_n]$$

such that

- Δ_0 inversible,
- $\Delta_i(\mathbf{x}, \mathbf{y}) \equiv x_i \Delta_0(\mathbf{x}, \mathbf{y}) \mod I(\mathbf{x}) \equiv y_i \Delta_0(\mathbf{x}, \mathbf{y}) \mod I(\mathbf{y}).$

Let I_0 be the intersection of primary components of the *isolated points* of $I = (f_1, \ldots, f_n)$.

Bezoutian conjecture: The matrices $M_i = \Delta_0^{-1} \Delta_i$ are the matrices of multiplication by x_i in the basis B of R/I_0 where B is the set of monomials indexing the columns of Δ_0 .

(conjecture in [C'95], proved under some hypothesis on B in [M'05]).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ● ●
Reduction

Apply the pencil reduction algorithm applied to $[B_1, B_{x_1}, \ldots, B_{x_n}]$ in order to obtain matrices

$$[\Delta_0, \Delta_1, \ldots, \Delta_n]$$

such that

- Δ_0 inversible,
- $-\Delta_i(\mathbf{x},\mathbf{y}) \equiv x_i \, \Delta_0(\mathbf{x},\mathbf{y}) \mod I(\mathbf{x}) \equiv y_i \, \Delta_0(\mathbf{x},\mathbf{y}) \mod I(\mathbf{y}).$

Let I_0 be the intersection of primary components of the *isolated points* of $I = (f_1, \ldots, f_n)$.

Bezoutian conjecture: The matrices $M_i = \Delta_0^{-1} \Delta_i$ are the matrices of multiplication by x_i in the basis B of R/I_0 where B is the set of monomials indexing the columns of Δ_0 .

(conjecture in [C'95], proved under some hypothesis on *B* in [M'05]). The flat extension theorem applies to a $\tau \in R^*$ such that $H_{\tau} = \Delta_0$ (another proof of the conjecture).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ● ●

Reduction

Apply the pencil reduction algorithm applied to $[B_1, B_{x_1}, \ldots, B_{x_n}]$ in order to obtain matrices

$$[\Delta_0, \Delta_1, \ldots, \Delta_n]$$

such that

- Δ_0 inversible,
- $\Delta_i(\mathbf{x}, \mathbf{y}) \equiv x_i \Delta_0(\mathbf{x}, \mathbf{y}) \mod I(\mathbf{x}) \equiv y_i \Delta_0(\mathbf{x}, \mathbf{y}) \mod I(\mathbf{y}).$

Let I_0 be the intersection of primary components of the *isolated points* of $I = (f_1, \ldots, f_n)$.

Bezoutian conjecture: The matrices $M_i = \Delta_0^{-1} \Delta_i$ are the matrices of multiplication by x_i in the basis B of R/I_0 where B is the set of monomials indexing the columns of Δ_0 .

(conjecture in [C'95], proved under some hypothesis on B in [M'05]).

The flat extension theorem applies to a $\tau \in R^*$ such that $H_{\tau} = \Delta_0$ (another proof of the conjecture).

Solution The linear form $\tilde{\tau}$ extending τ is the residue of $f_{1, :\sigma}, f_{n}$, f_{n} ,

Alessandra Bernardi, Jérôme Brachat, Pierre Comon, and Bernard Mourrain. General tensor decomposition, moment matrices and applications. *Journal of Symbolic Computation*, (0):-, 2012.

Jérôme Brachat, Pierre Comon, Bernard Mourrain, and Elias P. Tsigaridas. Symmetric tensor decomposition.

Linear Algebra and Applications, 433(11-12):1851–1872, 2010.

Jean-Bernard Lasserre, Monique Laurent, Bernard Mourrain, Philipp Rostalski, and Philippe Trébuchet. Moment matrices, border bases and real radical computation. *Journal of Symbolic Computation*, (0):-, 2012.

Monique Laurent and Bernard Mourrain. A Sparse Flat Extension Theorem for Moment Matrices. *Archiv der Mathematik*, 93:87–98, 2009.

Bernard Mourrain.

Bezoutian and quotient ring structure. Journal of Symbolic Computation, 39(3-4):397–415, March 2005.

Bernard Mourrain and Victor Y. Pan. Multivariate polynomials, duality and structured matrices. *Journal of Complexity*, 16(1):110–180, 2000.

Thanks for your attention

Moment matrices for root finding