Moment matrices for root finding

B. Mourrain
GALAAD, INRIA Méditerranée, Sophia Antipolis
Bernard.Mourrain@inria.fr

GEOLMI
10-14 Septembre

Algebraic method for solving polynomial equations

- $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]=\mathbb{K}[\mathbf{x}]=R$ the multivariate polynomial ring over the field \mathbb{K}.
- $\left(f_{1}, \ldots, f_{s}\right)=I$ the ideal generated by the polynomials f_{1}, \ldots, f_{s} to solve.

Algebraic method for solving polynomial equations

- $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]=\mathbb{K}[\mathbf{x}]=R$ the multivariate polynomial ring over the field \mathbb{K}.
- $\left(f_{1}, \ldots, f_{s}\right)=l$ the ideal generated by the polynomials f_{1}, \ldots, f_{s} to solve.

Objective: construct

- $A \subset R$ described by a basis B,
- a projection $\pi: R \rightarrow A$ such that the following sequence is exact:

$$
0 \rightarrow I \rightarrow R \xrightarrow{\pi} A \rightarrow 0 .
$$

Algebraic method for solving polynomial equations

- $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]=\mathbb{K}[\mathbf{x}]=R$ the multivariate polynomial ring over the field \mathbb{K}.
- $\left(f_{1}, \ldots, f_{s}\right)=l$ the ideal generated by the polynomials f_{1}, \ldots, f_{s} to solve.

Objective: construct

- $A \subset R$ described by a basis B,
- a projection $\pi: R \rightarrow A$ such that the following sequence is exact:

$$
0 \rightarrow I \rightarrow R \xrightarrow{\pi} A \rightarrow 0 .
$$

Then $R=A \oplus I$ and $\mathcal{A}=R / I \sim A=\operatorname{im} \pi, I=\operatorname{ker} \pi$.
For $p \in R, \pi(p) \in A$ is the normal form of p.

Algebraic method for solving polynomial equations

- $\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]=\mathbb{K}[\mathbf{x}]=R$ the multivariate polynomial ring over the field \mathbb{K}.
- $\left(f_{1}, \ldots, f_{s}\right)=l$ the ideal generated by the polynomials f_{1}, \ldots, f_{s} to solve.

Objective: construct

- $A \subset R$ described by a basis B,
- a projection $\pi: R \rightarrow A$ such that the following sequence is exact:

$$
0 \rightarrow I \rightarrow R \xrightarrow{\pi} A \rightarrow 0 .
$$

Then $R=A \oplus I$ and $\mathcal{A}=R / I \sim A=\operatorname{im} \pi, I=\operatorname{ker} \pi$.
For $p \in R, \pi(p) \in A$ is the normal form of p.
Normal form algorithms: Gröbner basis, H-basis, Janet basis, Border basis ...

Border basis

Border basis

- B a set of monomials connected to 1 $\left(1 \in B, \forall m \in B \backslash\{1\} \exists m^{\prime} \in B, i \in[1, n]\right.$ st. $m=m^{\prime} x_{i}$).
- $B^{+}=B \cup x_{1} B \cup \cdots \cup x_{n} B, \partial B=B^{+}-B$.

Border basis

- B a set of monomials connected to 1 $\left(1 \in B, \forall m \in B \backslash\{1\} \exists m^{\prime} \in B, i \in[1, n]\right.$ st. $m=m^{\prime} x_{i}$).
- $B^{+}=B \cup x_{1} B \cup \cdots \cup x_{n} B, \partial B=B^{+}-B$.

Theorem

Let $d \geq 2$, let B be a subset of \mathcal{M} connected to 1 , let $\pi:\left\langle B^{+}\right\rangle_{\leq d} \rightarrow\langle B\rangle_{\leq d}$ be a projection and let F be the rewriting family of π.
The following conditions are equivalent:
(1) $\left(M_{i} \circ M_{j}-M_{j} \circ M_{i}\right)_{\mid\langle B\rangle \leq d-2}=0$ for $1 \leq i<j \leq n$,
(2) there exists a unique projection $\tilde{\pi}: R_{\leq d} \rightarrow\langle B\rangle_{\leq d}$ such that the restriction of $\tilde{\pi}$ to $\left\langle B^{+}\right\rangle_{\leq d}$ is π and $\operatorname{ker} \tilde{\pi}=\left\langle F^{\langle\leq d\rangle}\right\rangle$,

Border basis

- B a set of monomials connected to 1 $\left(1 \in B, \forall m \in B \backslash\{1\} \exists m^{\prime} \in B, i \in[1, n]\right.$ st. $m=m^{\prime} x_{i}$).
- $B^{+}=B \cup x_{1} B \cup \cdots \cup x_{n} B, \partial B=B^{+}-B$.

Theorem

Let $d \geq 2$, let B be a subset of \mathcal{M} connected to 1 , let $\pi:\left\langle B^{+}\right\rangle_{\leq d} \rightarrow\langle B\rangle_{\leq d}$ be a projection and let F be the rewriting family of π.
The following conditions are equivalent:
(1) $\left(M_{i} \circ M_{j}-M_{j} \circ M_{i}\right)_{\mid\langle B\rangle \leq d-2}=0$ for $1 \leq i<j \leq n$,
(2) there exists a unique projection $\tilde{\pi}: R_{\leq d} \rightarrow\langle B\rangle_{\leq d}$ such that the restriction of $\tilde{\pi}$ to $\left\langle B^{+}\right\rangle_{\leq d}$ is π and $\operatorname{ker} \tilde{\pi}=\left\langle F^{\langle\leq d\rangle}\right\rangle$,

Can be checked easily by reducing the commutation polynomials.

Border basis

- B a set of monomials connected to 1 $\left(1 \in B, \forall m \in B \backslash\{1\} \exists m^{\prime} \in B, i \in[1, n]\right.$ st. $m=m^{\prime} x_{i}$).
- $B^{+}=B \cup x_{1} B \cup \cdots \cup x_{n} B, \partial B=B^{+}-B$.

Theorem

Let $d \geq 2$, let B be a subset of \mathcal{M} connected to 1 , let $\pi:\left\langle B^{+}\right\rangle_{\leq d} \rightarrow\langle B\rangle_{\leq d}$ be a projection and let F be the rewriting family of π.
The following conditions are equivalent:
(1) $\left(M_{i} \circ M_{j}-M_{j} \circ M_{i}\right)_{\mid\langle B\rangle \leq d-2}=0$ for $1 \leq i<j \leq n$,
(2) there exists a unique projection $\tilde{\pi}: R_{\leq d} \rightarrow\langle B\rangle_{\leq d}$ such that the restriction of $\tilde{\pi}$ to $\left\langle B^{+}\right\rangle_{\leq d}$ is π and $\operatorname{ker} \tilde{\pi}=\left\langle F^{\langle\leq d\rangle}\right\rangle$,

Can be checked easily by reducing the commutation polynomials.
Border basis iff (1) applies for any $d \geq 2$.

Recovering the roots by eigenvector computation

Recovering the roots by eigenvector computation

 Hypothesis: $\mathcal{V}_{\overline{\mathbb{K}}}(I)=\left\{\zeta_{1}, \ldots, \zeta_{r}\right\} \Leftrightarrow \mathcal{A}=\mathbb{K}[\mathbf{x}] / /$ of dimension $D<\infty$ over \mathbb{K}.
Operators of multiplication:

$$
\begin{array}{rlrlrl}
\mathcal{M}_{a}: \mathcal{A} & \rightarrow \mathcal{A} & \mathcal{M}_{a}^{t}: \widehat{\mathcal{A}} & \rightarrow \widehat{\mathcal{A}} \\
u & \mapsto a u & & \Lambda & \mapsto a \cdot \Lambda=\Lambda \circ M_{a}
\end{array}
$$

Recovering the roots by eigenvector computation

 Hypothesis: $\mathcal{V}_{\overline{\mathbb{K}}}(I)=\left\{\zeta_{1}, \ldots, \zeta_{r}\right\} \Leftrightarrow \mathcal{A}=\mathbb{K}[\mathbf{x}] / I$ of dimension $D<\infty$ over \mathbb{K}.
Operators of multiplication:

$$
\begin{array}{rlrlrl}
\mathcal{M}_{a}: \mathcal{A} & \rightarrow \mathcal{A} & \mathcal{M}_{a}^{\mathrm{t}}: \widehat{\mathcal{A}} & \rightarrow \widehat{\mathcal{A}} \\
u & \mapsto a u & & \Lambda & \mapsto a \cdot \Lambda=\Lambda \circ M_{a}
\end{array}
$$

Their representation in the basis $B=\left\{b_{1}, \ldots, b_{D}\right\}$ of A :

$$
M_{a}=\left[\pi\left(a b_{j}\right)_{i}\right]_{1 \leq i, j \leq D}, \quad M_{a}^{t}=\left[\pi\left(a b_{i}\right)_{j}\right]_{1 \leq i, j \leq D} .
$$

Recovering the roots by eigenvector computation

 Hypothesis: $\mathcal{V}_{\mathbb{K}}(I)=\left\{\zeta_{1}, \ldots, \zeta_{r}\right\} \Leftrightarrow \mathcal{A}=\mathbb{K}[\mathbf{x}] / /$ of dimension $D<\infty$ over \mathbb{K}.
Operators of multiplication:

$$
\begin{array}{rlrlrl}
\mathcal{M}_{a}: \mathcal{A} & \rightarrow \mathcal{A} & \mathcal{M}_{a}^{t}: \widehat{\mathcal{A}} & \rightarrow \widehat{\mathcal{A}} \\
u & \mapsto a u & & \Lambda & \mapsto a \cdot \Lambda=\Lambda \circ M_{a}
\end{array}
$$

Their representation in the basis $B=\left\{b_{1}, \ldots, b_{D}\right\}$ of A :

$$
M_{a}=\left[\pi\left(a b_{j}\right)_{i}\right]_{1 \leq i, j \leq D}, \quad M_{a}^{t}=\left[\pi\left(a b_{i}\right)_{j}\right]_{1 \leq i, j \leq D} .
$$

Theorem

- The eigenvalues of M_{a} are $\left\{a\left(\zeta_{1}\right), \ldots, a\left(\zeta_{r}\right)\right\}$.
- The eigenvectors of all $\left(M_{a}^{\mathrm{t}}\right)_{a \in \mathcal{A}}$ are (up to a scalar) $\mathbf{1}_{\zeta_{i}}: p \mapsto p\left(\zeta_{i}\right)$.

Recovering the roots by eigenvector computation

 Hypothesis: $\mathcal{V}_{\mathbb{K}}(I)=\left\{\zeta_{1}, \ldots, \zeta_{r}\right\} \Leftrightarrow \mathcal{A}=\mathbb{K}[\mathbf{x}] / /$ of dimension $D<\infty$ over \mathbb{K}.
Operators of multiplication:

$$
\begin{array}{rlrlrl}
\mathcal{M}_{a}: \mathcal{A} & \rightarrow \mathcal{A} & \mathcal{M}_{a}^{t}: \widehat{\mathcal{A}} & \rightarrow \widehat{\mathcal{A}} \\
u & \mapsto a u & & \Lambda & \mapsto a \cdot \Lambda=\Lambda \circ M_{a}
\end{array}
$$

Their representation in the basis $B=\left\{b_{1}, \ldots, b_{D}\right\}$ of A :

$$
M_{a}=\left[\pi\left(a b_{j}\right)_{i}\right]_{1 \leq i, j \leq D}, \quad M_{a}^{t}=\left[\pi\left(a b_{i}\right)_{j}\right]_{1 \leq i, j \leq D} .
$$

Theorem

- The eigenvalues of M_{a} are $\left\{a\left(\zeta_{1}\right), \ldots, a\left(\zeta_{r}\right)\right\}$.
- The eigenvectors of all $\left(M_{a}^{\mathrm{t}}\right)_{a \in \mathcal{A}}$ are (up to a scalar) $\mathbf{1}_{\zeta_{i}}: p \mapsto p\left(\zeta_{i}\right)$.

In practice, take some a in $\left\langle x_{1}, \ldots, x_{n}\right\rangle$.

Duality

Duality

\square The dual de $\mathbb{K}[x]$ is $\mathbb{K}[x]^{*}=\{\Lambda: \mathbb{K}[x] \rightarrow \mathbb{K}$, linear $\}$.

Duality

\square The dual de $\mathbb{K}[\mathbf{x}]$ is $\mathbb{K}[\mathbf{x}]^{*}=\{\Lambda: \mathbb{K}[\mathbf{x}] \rightarrow \mathbb{K}$, linear $\}$.
$\square \mathbb{K}[[\mathbf{x}]]^{*}=\mathbb{K}\left[\left[\mathbf{d}_{1}, \ldots, \mathbf{d}_{n}\right]\right]$.

$$
\Lambda=\sum_{\alpha \in \mathbb{N}^{n}} \Lambda\left(\mathbf{x}^{\alpha}\right) \mathbf{d}^{\alpha}
$$

where $\left(\mathbf{d}^{\alpha}\right)_{\alpha \in \mathbb{N}^{n}}$ is the dual basis of $\left(\mathbf{x}^{\alpha}\right)_{\alpha \in \mathbb{N}^{n}}$.

Duality

\square The dual de $\mathbb{K}[x]$ is $\mathbb{K}[x]^{*}=\{\Lambda: \mathbb{K}[x] \rightarrow \mathbb{K}$, linear $\}$.
$\square \mathbb{K}[[\mathbf{x}]]^{*}=\mathbb{K}\left[\left[\mathbf{d}_{1}, \ldots, \mathbf{d}_{n}\right]\right]$.

$$
\Lambda=\sum_{\alpha \in \mathbb{N}^{n}} \Lambda\left(\mathbf{x}^{\alpha}\right) \mathbf{d}^{\alpha}
$$

where $\left(\mathbf{d}^{\alpha}\right)_{\alpha \in \mathbb{N}^{n}}$ is the dual basis of $\left(\mathbf{x}^{\alpha}\right)_{\alpha \in \mathbb{N}^{n}}$.
\square The $\mathbb{K}[x]$-module structure:
$\forall a \in \mathbb{K}[\mathbf{x}], \forall \Lambda \in \mathbb{K}[\mathbf{x}]^{*}$,

$$
a \cdot \Lambda: b \mapsto a \cdot \Lambda(b)=\Lambda(a b)
$$

Duality

\square The dual de $\mathbb{K}[x]$ is $\mathbb{K}[x]^{*}=\{\Lambda: \mathbb{K}[x] \rightarrow \mathbb{K}$, linear $\}$.
$\square \mathbb{K}[[\mathbf{x}]]^{*}=\mathbb{K}\left[\left[\mathbf{d}_{1}, \ldots, \mathbf{d}_{n}\right]\right]$.

$$
\Lambda=\sum_{\alpha \in \mathbb{N}^{n}} \Lambda\left(\mathbf{x}^{\alpha}\right) \mathbf{d}^{\alpha}
$$

where $\left(\mathbf{d}^{\alpha}\right)_{\alpha \in \mathbb{N}^{n}}$ is the dual basis of $\left(\mathbf{x}^{\alpha}\right)_{\alpha \in \mathbb{N}^{n}}$.
\square The $\mathbb{K}[x]$-module structure:
$\forall a \in \mathbb{K}[\mathbf{x}], \forall \Lambda \in \mathbb{K}[\mathbf{x}]^{*}$,

$$
a \cdot \Lambda: b \mapsto a \cdot \Lambda(b)=\Lambda(a b)
$$

Example: $x_{1} \cdot \mathbf{d}_{1}^{\alpha_{1}} \mathbf{d}_{2}^{\alpha_{2}} \cdots \mathbf{d}_{n}^{\alpha_{n}}=\mathbf{d}_{1}^{\alpha_{1}-1} \mathbf{d}_{2}^{\alpha_{2}} \cdots \mathbf{d}_{n}^{\alpha_{n}}$ if $\alpha_{1}>0$ and 0 otherwise.

Examples

- $p \mapsto p(\zeta)$ represented by the series $\mathbf{1}_{\zeta}=\sum_{\alpha \in \mathbb{N}^{n}} \zeta^{\alpha} \mathbf{d}^{\alpha}$.
- $p \mapsto \partial_{1}^{\alpha_{1}} \cdots \partial_{n}^{\alpha_{n}}(p)(0)$ represented by $\alpha!\mathbf{d}^{\alpha}$.
- $p \mapsto$ coefficient of x^{α} in $\pi(p)$.
- $p \mapsto \int_{\Omega} p d \mu$.

Our objective

Exploit the properties of the dual

$$
\mathcal{A}^{*}=\{\Lambda: \mathbb{K}[\mathbf{x}] \rightarrow \mathbb{K} \mid \Lambda(I)=0\}=I^{\perp}
$$

of $\mathcal{A}=\mathbb{K}[\mathbf{x}] / /$ to find the roots $\mathcal{V}(I)=\left\{\zeta_{1}, \ldots, \zeta_{r}\right\}$.

Our objective

Exploit the properties of the dual

$$
\mathcal{A}^{*}=\{\Lambda: \mathbb{K}[\mathrm{x}] \rightarrow \mathbb{K} \mid \Lambda(I)=0\}=I^{\perp}
$$

of $\mathcal{A}=\mathbb{K}[\mathbf{x}] / /$ to find the roots $\mathcal{V}(I)=\left\{\zeta_{1}, \ldots, \zeta_{r}\right\}$.

Outline

(1) Properties
(2) Applications

Moment matrices and Hankel operators

Moment matrices and Hankel operators

- For $\Lambda \in E^{*}$ where $E=\left\langle\mathbf{x}^{A}\right\rangle$, the moments are $\Lambda\left(x^{\alpha}\right) \in \mathbb{K}$ for $\alpha \in A \subset \mathbb{N}^{n}$.

Moment matrices and Hankel operators

- For $\Lambda \in E^{*}$ where $E=\left\langle\mathbf{x}^{A}\right\rangle$, the moments are $\Lambda\left(x^{\alpha}\right) \in \mathbb{K}$ for $\alpha \in A \subset \mathbb{N}^{n}$.
- For E_{1}, E_{2} such that $E_{1} \cdot E_{2} \subset E$ and $\Lambda \in E^{*}$, the associated truncated Hankel operator is

$$
\begin{aligned}
H_{\Lambda}^{E_{1}, E_{2}}: E_{1} & \rightarrow E_{2}^{*} \\
p & \mapsto p \cdot \Lambda
\end{aligned}
$$

where $p \cdot \Lambda: q \mapsto \Lambda(p q)$.

Moment matrices and Hankel operators

- For $\Lambda \in E^{*}$ where $E=\left\langle\mathbf{x}^{A}\right\rangle$, the moments are $\Lambda\left(x^{\alpha}\right) \in \mathbb{K}$ for $\alpha \in A \subset \mathbb{N}^{n}$.
- For E_{1}, E_{2} such that $E_{1} \cdot E_{2} \subset E$ and $\Lambda \in E^{*}$, the associated truncated Hankel operator is

$$
\begin{aligned}
H_{\Lambda}^{E_{1}, E_{2}}: E_{1} & \rightarrow E_{2}^{*} \\
p & \mapsto p \cdot \Lambda
\end{aligned}
$$

where $p \cdot \Lambda: q \mapsto \Lambda(p q)$.

- Its matrix in the monomial basis $\left(\mathbf{x}^{\alpha}\right)_{\alpha \in E_{1}}$ and the dual basis $\left(\mathbf{d}^{\alpha}\right)_{\alpha \in E_{2}}$ is the moment matrix:

$$
\left[H_{\Lambda}^{E_{1}, E_{2}}\right]=\left(\Lambda\left(\mathbf{x}^{\alpha+\beta}\right)\right)_{\alpha \in E_{1}, \beta \in E_{2}}
$$

Moment matrices and Hankel operators

- For $\Lambda \in E^{*}$ where $E=\left\langle\mathbf{x}^{A}\right\rangle$, the moments are $\Lambda\left(x^{\alpha}\right) \in \mathbb{K}$ for $\alpha \in A \subset \mathbb{N}^{n}$.
- For E_{1}, E_{2} such that $E_{1} \cdot E_{2} \subset E$ and $\Lambda \in E^{*}$, the associated truncated Hankel operator is

$$
\begin{aligned}
H_{\Lambda}^{E_{1}, E_{2}}: E_{1} & \rightarrow E_{2}^{*} \\
p & \mapsto p \cdot \Lambda
\end{aligned}
$$

where $p \cdot \Lambda: q \mapsto \Lambda(p q)$.

- Its matrix in the monomial basis $\left(\mathbf{x}^{\alpha}\right)_{\alpha \in E_{1}}$ and the dual basis $\left(\mathbf{d}^{\alpha}\right)_{\alpha \in E_{2}}$ is the moment matrix:

$$
\left[H_{\Lambda}^{E_{1}, E_{2}}\right]=\left(\Lambda\left(\mathbf{x}^{\alpha+\beta}\right)\right)_{\alpha \in E_{1}, \beta \in E_{2}}
$$

- If $E=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]$, we define the Hankel operator:

$$
\begin{aligned}
H_{\Lambda}: \mathbb{K}[\mathbf{x}] & \rightarrow \mathbb{K}[\mathbf{x}]^{*} \\
p & \mapsto p \cdot \Lambda
\end{aligned}
$$

Linear forms "supported" on points

Definition: Λ is supported on points if $I_{\Lambda}=\operatorname{ker} H_{\Lambda}$ is zero-dimensional.

Linear forms "supported" on points

Definition: Λ is supported on points if $I_{\Lambda}=\operatorname{ker} H_{\Lambda}$ is zero-dimensional. Properties:

Linear forms "supported" on points

Definition: Λ is supported on points if $I_{\Lambda}=\operatorname{ker} H_{\Lambda}$ is zero-dimensional. Properties:

- Λ is supported on points iff $\operatorname{rank} H_{\Lambda}=r<\infty$.

Linear forms "supported" on points

Definition: Λ is supported on points if $I_{\Lambda}=\operatorname{ker} H_{\Lambda}$ is zero-dimensional.

Properties:

- Λ is supported on points iff $\operatorname{rank} H_{\Lambda}=r<\infty$.
- If Λ is supported on points, then

$$
\Lambda: p \mapsto \sum_{i=1}^{r^{\prime}} \mathbf{1}_{\zeta_{i}} \cdot \theta_{i}\left(\partial_{x_{1}}, \ldots, \partial_{x_{n}}\right)(p)
$$

for some $\zeta_{i} \in \mathbb{C}^{n}$ and some differential polynomials θ_{i} with

- $r=\sum_{i=1}^{r} \operatorname{dim}\left(\left\langle\partial_{\partial}^{\alpha}\left(\theta_{i}\right)\right\rangle\right)$
- $V_{\mathbb{C}}\left(I_{\Lambda}\right)=\left\{\zeta_{1}, \ldots, \zeta_{r^{\prime}}\right\}$.

Linear forms "supported" on points

Definition: Λ is supported on points if $I_{\Lambda}=\operatorname{ker} H_{\Lambda}$ is zero-dimensional. Properties:

- Λ is supported on points iff $\operatorname{rank} H_{\Lambda}=r<\infty$.
- If Λ is supported on points, then

$$
\Lambda: p \mapsto \sum_{i=1}^{r^{\prime}} \mathbf{1}_{\zeta_{i}} \cdot \theta_{i}\left(\partial_{x_{1}}, \ldots, \partial_{x_{n}}\right)(p)
$$

for some $\zeta_{i} \in \mathbb{C}^{n}$ and some differential polynomials θ_{i} with

- $r=\sum_{i=1}^{r} \operatorname{dim}\left(\left\langle\partial_{\partial}^{\alpha}\left(\theta_{i}\right)\right\rangle\right)$
- $V_{\mathbb{C}}\left(I_{\Lambda}\right)=\left\{\zeta_{1}, \ldots, \zeta_{r^{\prime}}\right\}$.
- If Λ is supported on points, then $\mathcal{A}_{\Lambda}=R / I_{\Lambda}$ is a Gorenstein algebra:

Linear forms "supported" on points

Definition: Λ is supported on points if $I_{\Lambda}=\operatorname{ker} H_{\Lambda}$ is zero-dimensional.

Properties:

- Λ is supported on points iff $\operatorname{rank} H_{\Lambda}=r<\infty$.
- If Λ is supported on points, then

$$
\Lambda: p \mapsto \sum_{i=1}^{r^{\prime}} \mathbf{1}_{\zeta_{i}} \cdot \theta_{i}\left(\partial_{x_{1}}, \ldots, \partial_{x_{n}}\right)(p)
$$

for some $\zeta_{i} \in \mathbb{C}^{n}$ and some differential polynomials θ_{i} with

- $r=\sum_{i=1}^{r^{\prime}} \operatorname{dim}\left(\left\langle\partial_{\partial}^{\alpha}\left(\theta_{i}\right)\right\rangle\right)$
- $V_{\mathbb{C}}\left(I_{\Lambda}\right)=\left\{\zeta_{1}, \ldots, \zeta_{r^{\prime}}\right\}$.
- If Λ is supported on points, then $\mathcal{A}_{\Lambda}=R / I_{\Lambda}$ is a Gorenstein algebra:
(1) $\mathcal{A}_{\Lambda}^{*}=\mathcal{A}_{\Lambda} \cdot \wedge$ (free module of rank 1).
(2) $(a, b) \mapsto \Lambda(a b)$ is non-degenerate in \mathcal{A}_{Λ}.
(3) $\operatorname{Hom}_{\mathcal{A}_{\wedge}}\left(\mathcal{A}_{\Lambda}^{*}, \mathcal{A}_{\Lambda}\right)=\mathcal{D} \cdot \mathcal{A}_{\Lambda}$ where $\mathcal{D}=\sum_{i=1}^{r} b_{i} \otimes \omega_{i}$ for $\left(b_{i}\right)_{1 \leqslant i \leqslant r}$ a basis of \mathcal{A}_{Λ} and $\left(\omega_{i}\right)_{1 \leqslant i \leqslant r}$ its dual basis for Λ.

Positive linear forms

Definition: $\Lambda \in \mathbb{R}[\mathbf{x}]^{*}$ is positive if $\Lambda\left(p^{2}\right) \geqslant 0$ for all $p \in \mathbb{R}[\mathbf{x}]$.

Positive linear forms

Definition: $\Lambda \in \mathbb{R}[\mathbf{x}]^{*}$ is positive if $\Lambda\left(p^{2}\right) \geqslant 0$ for all $p \in \mathbb{R}[\mathbf{x}]$.

Properties:

Positive linear forms

Definition: $\Lambda \in \mathbb{R}[\mathbf{x}]^{*}$ is positive if $\Lambda\left(p^{2}\right) \geqslant 0$ for all $p \in \mathbb{R}[\mathbf{x}]$.

Properties:

- $\Lambda \in \mathbb{R}[\mathbf{x}]^{*}$ is positive iff $H_{\Lambda} \succcurlyeq 0$.

Positive linear forms

Definition: $\Lambda \in \mathbb{R}[\mathbf{x}]^{*}$ is positive if $\Lambda\left(p^{2}\right) \geqslant 0$ for all $p \in \mathbb{R}[\mathbf{x}]$.

Properties:

- $\Lambda \in \mathbb{R}[\mathbf{x}]^{*}$ is positive iff $H_{\Lambda} \succcurlyeq 0$.
- If $\Lambda \succcurlyeq 0$ then $I_{\Lambda}=\operatorname{ker} H_{\Lambda}$ is a real radical ideal.

Positive linear forms

Definition: $\Lambda \in \mathbb{R}[\mathbf{x}]^{*}$ is positive if $\Lambda\left(p^{2}\right) \geqslant 0$ for all $p \in \mathbb{R}[\mathbf{x}]$.

Properties:

- $\Lambda \in \mathbb{R}[\mathbf{x}]^{*}$ is positive iff $H_{\Lambda} \succcurlyeq 0$.
- If $\Lambda \succcurlyeq 0$ then $I_{\Lambda}=\operatorname{ker} H_{\Lambda}$ is a real radical ideal.
- Λ supported on points and positive iff $\Lambda=\sum_{i=1}^{r} \gamma_{i} \mathbf{1}_{\zeta_{i}}$ with $\gamma_{i}>0$ and ζ_{i} are distinct points of \mathbb{R}^{n}.

Flat extension

Flat extension

Theorem (LM'09, BCMT'10, BBCM'11)

Let B, B^{\prime} be connected to 1 of size r and $\Lambda \in\left\langle B^{+} \cdot B^{\prime+}\right\rangle^{*}$. The following conditions are equivalent:
(1) there exists a unique element $\tilde{\Lambda} \in R^{*}$ which extends Λ and such that B and B^{\prime} are basis of $\mathcal{A}_{\Lambda}=R / I_{\Lambda}$.
(2)

$$
\operatorname{rank} H_{\Lambda}^{B, B^{\prime}}=\operatorname{rank} H_{\Lambda}^{B^{+}, B^{\prime+}}=r
$$

(3) $H_{\Lambda}^{B, B^{\prime}}$ is invertible and the matrices $M_{i}:=H_{\Lambda}^{B, x_{i} B^{\prime}}\left(H_{\Lambda}^{B, B^{\prime}}\right)^{-1}$ satisfy

$$
M_{i} \circ M_{j}=M_{j} \circ M_{i} \quad(1 \leq i, j \leq n)
$$

In this case, $\tilde{\Lambda}$ is supported on points.

Flat extension

Theorem (LM'09, BCMT'10, BBCM'11)

Let B, B^{\prime} be connected to 1 of size r and $\Lambda \in\left\langle B^{+} \cdot B^{\prime+}\right\rangle^{*}$. The following conditions are equivalent:
(1) there exists a unique element $\tilde{\Lambda} \in R^{*}$ which extends Λ and such that B and B^{\prime} are basis of $\mathcal{A}_{\Lambda}=R / I_{\Lambda}$.
(2)

$$
\operatorname{rank} H_{\Lambda}^{B, B^{\prime}}=\operatorname{rank} H_{\Lambda}^{B^{+}, B^{\prime+}}=r
$$

(3) $H_{\Lambda}^{B, B^{\prime}}$ is invertible and the matrices $M_{i}:=H_{\Lambda}^{B, x_{i} B^{\prime}}\left(H_{\Lambda}^{B, B^{\prime}}\right)^{-1}$ satisfy

$$
M_{i} \circ M_{j}=M_{j} \circ M_{i} \quad(1 \leq i, j \leq n)
$$

In this case, $\tilde{\Lambda}$ is supported on points.
If $H_{\Lambda}^{B, B^{\prime}} \succcurlyeq 0$ then $\tilde{\Lambda} \succcurlyeq 0$.

Applications

Roots with no multiplicity

Let $f=x^{d}+f_{d-1} x^{d-1}+\cdots+f_{0} \in \mathbb{C}[x]$.
(1) Compute a generic sequence $\left(h_{i}\right)_{0 \leq i \leq 3 d-3}$ such that

$$
h_{d+j}=-f_{d-1} h_{d-j-1}-\cdots-f_{0} h_{j} .
$$

(2) Compute $\left(h_{i}^{\prime}\right)_{0 \leq i \leq 2 d-2}=f^{\prime} \cdot\left(h_{j}\right)$ such that $h_{j}^{\prime}=\sum_{i=1}^{d} i h_{j+i-1} f_{i}$.
(3) Compute the kernel of

$$
H_{f^{\prime}}=\left(h_{i+j}^{\prime}\right)_{0 \leq i, j \leq d-1} .
$$

Roots with no multiplicity

Let $f=x^{d}+f_{d-1} x^{d-1}+\cdots+f_{0} \in \mathbb{C}[x]$.
(1) Compute a generic sequence $\left(h_{i}\right)_{0 \leq i \leq 3 d-3}$ such that

$$
h_{d+j}=-f_{d-1} h_{d-j-1}-\cdots-f_{0} h_{j} .
$$

(2) Compute $\left(h_{i}^{\prime}\right)_{0 \leq i \leq 2 d-2}=f^{\prime} \cdot\left(h_{j}\right)$ such that $h_{j}^{\prime}=\sum_{i=1}^{d} i h_{j+i-1} f_{i}$.
(3) Compute the kernel of

$$
H_{f^{\prime}}=\left(h_{i+j}^{\prime}\right)_{0 \leq i, j \leq d-1} .
$$

The polynomial of smallest degree of ker $H_{f^{\prime}}$ has the same roots as f, but with multiplicity 1 .

Roots with no multiplicity

Let $f=x^{d}+f_{d-1} x^{d-1}+\cdots+f_{0} \in \mathbb{C}[x]$.
(1) Compute a generic sequence $\left(h_{i}\right)_{0 \leq i \leq 3 d-3}$ such that

$$
h_{d+j}=-f_{d-1} h_{d-j-1}-\cdots-f_{0} h_{j} .
$$

(2) Compute $\left(h_{i}^{\prime}\right)_{0 \leq i \leq 2 d-2}=f^{\prime} \cdot\left(h_{j}\right)$ such that $h_{j}^{\prime}=\sum_{i=1}^{d} i h_{j+i-1} f_{i}$.
(3) Compute the kernel of

$$
H_{f^{\prime}}=\left(h_{i+j}^{\prime}\right)_{0 \leq i, j \leq d-1} .
$$

The polynomial of smallest degree of ker $H_{f^{\prime}}$ has the same roots as f, but with multiplicity 1.

Another way to compute $f / \operatorname{gcd}\left(f, f^{\prime}\right) \ldots$

Roots with no multiplicity

Let $f=x^{d}+f_{d-1} x^{d-1}+\cdots+f_{0} \in \mathbb{C}[x]$.
(1) Compute a generic sequence $\left(h_{i}\right)_{0 \leq i \leq 3 d-3}$ such that

$$
h_{d+j}=-f_{d-1} h_{d-j-1}-\cdots-f_{0} h_{j} .
$$

(2) Compute $\left(h_{i}^{\prime}\right)_{0 \leq i \leq 2 d-2}=f^{\prime} \cdot\left(h_{j}\right)$ such that $h_{j}^{\prime}=\sum_{i=1}^{d} i h_{j+i-1} f_{i}$.
(3) Compute the kernel of

$$
H_{f^{\prime}}=\left(h_{i+j}^{\prime}\right)_{0 \leq i, j \leq d-1} .
$$

The polynomial of smallest degree of ker $H_{f^{\prime}}$ has the same roots as f, but with multiplicity 1.

Another way to compute $f / \operatorname{gcd}\left(f, f^{\prime}\right) \ldots$
Fast algorithm: $\tilde{\mathcal{O}}(d)$.

Real roots of univariate polynomials

Let $f=x^{d}+f_{d-1} x^{d-1}+\cdots+f_{0} \in \mathbb{R}[x]$.
(1) Compute a generic sequence $\left(h_{i}\right)_{0 \leq i \leq 2 d-2}$ such that

- $h_{d+j}=-f_{d-1} h_{d-j-1}-\cdots-f_{0} h_{j}$ and
- $H_{f, \succcurlyeq}=\left(h_{i+j}\right)_{0 \leq i, j \leq d-1} \succcurlyeq 0$;
(2) Compute the kernel of $H_{f, \succcurlyeq}$.

Real roots of univariate polynomials

Let $f=x^{d}+f_{d-1} x^{d-1}+\cdots+f_{0} \in \mathbb{R}[x]$.
(1) Compute a generic sequence $\left(h_{i}\right)_{0 \leq i \leq 2 d-2}$ such that

- $h_{d+j}=-f_{d-1} h_{d-j-1}-\cdots-f_{0} h_{j}$ and
- $H_{f, \succcurlyeq}=\left(h_{i+j}\right)_{0 \leq i, j \leq d-1} \succcurlyeq 0$;
(2) Compute the kernel of $H_{f, \succcurlyeq}$.

The polynomial of smallest degree of ker $H_{f, \succcurlyeq}$ has the same real roots as f, with multiplicity 1 .

Real roots of univariate polynomials

$$
\text { Let } f=x^{d}+f_{d-1} x^{d-1}+\cdots+f_{0} \in \mathbb{R}[x] \text {. }
$$

(1) Compute a generic sequence $\left(h_{i}\right)_{0 \leq i \leq 2 d-2}$ such that

- $h_{d+j}=-f_{d-1} h_{d-j-1}-\cdots-f_{0} h_{j}$ and
- $H_{f, \succcurlyeq}=\left(h_{i+j}\right)_{0 \leq i, j \leq d-1} \succcurlyeq 0$;
(2) Compute the kernel of $H_{f, \succcurlyeq}$.

The polynomial of smallest degree of ker $H_{f, \succcurlyeq}$ has the same real roots as f, with multiplicity 1 .

Numerical algorithm, no good complexity bound yet;

Example:

- Take $f=x^{4}-x^{3}-x+1=(x-1)^{2}\left(x^{2}+x+1\right)$.

Example:

- Take $f=x^{4}-x^{3}-x+1=(x-1)^{2}\left(x^{2}+x+1\right)$.
- Compute a linear form Λ such that $\Lambda\left(x^{4}\right)=\Lambda\left(x^{3}\right)+\Lambda(x)-\Lambda(1)$, $\Lambda\left(x^{5}\right)=\Lambda\left(x^{3}\right)+\Lambda\left(x^{2}\right)-\Lambda(1), \Lambda\left(x^{6}\right)=2 \Lambda\left(x^{3}\right)-\Lambda(1), \ldots$

$$
H_{\Lambda}:=\left(\begin{array}{cccc}
1 & a & b & c \\
a & b & c & c+a-1 \\
b & c & c+a-1 & c+b-1 \\
c & c+a-1 & c+b-1 & 2 c-1
\end{array}\right)
$$

where $a=\Lambda(x), b=\Lambda\left(x^{2}\right), c=\Lambda\left(x^{3}\right)$.

Example:

- Take $f=x^{4}-x^{3}-x+1=(x-1)^{2}\left(x^{2}+x+1\right)$.
- Compute a linear form Λ such that $\Lambda\left(x^{4}\right)=\Lambda\left(x^{3}\right)+\Lambda(x)-\Lambda(1)$, $\Lambda\left(x^{5}\right)=\Lambda\left(x^{3}\right)+\Lambda\left(x^{2}\right)-\Lambda(1), \Lambda\left(x^{6}\right)=2 \Lambda\left(x^{3}\right)-\Lambda(1), \ldots$

$$
H_{\Lambda}:=\left(\begin{array}{cccc}
1 & a & b & c \\
a & b & c & c+a-1 \\
b & c & c+a-1 & c+b-1 \\
c & c+a-1 & c+b-1 & 2 c-1
\end{array}\right)
$$

where $a=\Lambda(x), b=\Lambda\left(x^{2}\right), c=\Lambda\left(x^{3}\right)$.

- Find Λ such that $H_{\Lambda} \succcurlyeq 0$:

$$
H_{\Lambda}=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right)
$$

Example:

- Take $f=x^{4}-x^{3}-x+1=(x-1)^{2}\left(x^{2}+x+1\right)$.
- Compute a linear form Λ such that $\Lambda\left(x^{4}\right)=\Lambda\left(x^{3}\right)+\Lambda(x)-\Lambda(1)$, $\Lambda\left(x^{5}\right)=\Lambda\left(x^{3}\right)+\Lambda\left(x^{2}\right)-\Lambda(1), \Lambda\left(x^{6}\right)=2 \Lambda\left(x^{3}\right)-\Lambda(1), \ldots$

$$
H_{\Lambda}:=\left(\begin{array}{cccc}
1 & a & b & c \\
a & b & c & c+a-1 \\
b & c & c+a-1 & c+b-1 \\
c & c+a-1 & c+b-1 & 2 c-1
\end{array}\right)
$$

where $a=\Lambda(x), b=\Lambda\left(x^{2}\right), c=\Lambda\left(x^{3}\right)$.

- Find Λ such that $H_{\Lambda} \succcurlyeq 0$:

$$
H_{\Lambda}=\left(\begin{array}{llll}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1
\end{array}\right)
$$

- Compute its kernel: $\left\langle x-1, x^{2}-x, x^{3}-x^{2}, \ldots\right\rangle$.

Solving exponential polynomials

Given $f\left(u_{1}, \ldots, u_{n}\right)=\sum_{i=1}^{r} \lambda_{i} e^{u_{1} \gamma_{i, 1}+\cdots+u_{n} \gamma_{i, n}}=\sum_{i=1}^{r} \lambda_{i} \zeta_{i, 1}^{u_{1}} \cdots \zeta_{i, n}^{u_{n}}\left(\zeta_{i, j}=e^{\gamma_{i, j}}\right)$, find the points $\left(\zeta_{i, 1}, \ldots, \zeta_{i, n}\right) \in \mathbb{C}^{n}$ and $\lambda_{i} \in \mathbb{C}$ for $i=1 \ldots, r$.

Solving exponential polynomials

Given $f\left(u_{1}, \ldots, u_{n}\right)=\sum_{i=1}^{r} \lambda_{i} e^{u_{1} \gamma_{i, 1}+\cdots+u_{n} \gamma_{i, n}}=\sum_{i=1}^{r} \lambda_{i} \zeta_{i, 1}^{u_{1}} \cdots \zeta_{i, n}^{u_{n}}\left(\zeta_{i, j}=e^{\gamma_{i, j}}\right)$, find the points $\left(\zeta_{i, 1}, \ldots, \zeta_{i, n}\right) \in \mathbb{C}^{n}$ and $\lambda_{i} \in \mathbb{C}$ for $i=1 \ldots, r$.
(1) Find sets of monomials $B_{1}=\left\{\mathbf{x}^{\beta_{1}}, \ldots, \mathbf{x}^{\beta_{r}}\right\}$,

$$
\begin{aligned}
& B_{2}=\left\{\mathbf{x}^{\beta_{1}^{\prime}}, \ldots, \mathbf{x}^{\beta_{r}^{\prime}}\right\}=\left\{1, x_{1}, x_{2}, \ldots\right\} \subset \mathbb{N}^{n} \text { s.t. } \\
& H_{f}^{B_{1}, B_{2}}=\left(f\left(\beta_{i}+\beta_{j}^{\prime}\right)\right)_{1 \leqslant i, j \leqslant r} \text { is invertible; }
\end{aligned}
$$

Solving exponential polynomials

Given $f\left(u_{1}, \ldots, u_{n}\right)=\sum_{i=1}^{r} \lambda_{i} e^{u_{1} \gamma_{i, 1}+\cdots+u_{n} \gamma_{i, n}}=\sum_{i=1}^{r} \lambda_{i} \zeta_{i, 1}^{u_{1}} \cdots \zeta_{i, n}^{u_{n}}\left(\zeta_{i, j}=e^{\gamma_{i, j}}\right)$, find the points $\left(\zeta_{i, 1}, \ldots, \zeta_{i, n}\right) \in \mathbb{C}^{n}$ and $\lambda_{i} \in \mathbb{C}$ for $i=1 \ldots, r$.
(1) Find sets of monomials $B_{1}=\left\{\mathbf{x}^{\beta_{1}}, \ldots, \mathbf{x}^{\beta_{r}}\right\}$,

$$
\begin{aligned}
& B_{2}=\left\{\mathbf{x}^{\beta_{1}^{\prime}}, \ldots, \mathbf{x}^{\beta_{r}^{\prime}}\right\}=\left\{1, x_{1}, x_{2}, \ldots\right\} \subset \mathbb{N}^{n} \text { s.t. } \\
& H_{f}^{B_{1}, B_{2}}=\left(f\left(\beta_{i}+\beta_{j}^{\prime}\right)\right)_{1 \leqslant i, j \leqslant r} \text { is invertible; }
\end{aligned}
$$

(2) Compute the generalize eigenvalues $\zeta_{i, 1}$ and eigenvectors \mathbf{v}_{i} of

$$
\left(H_{f}^{B_{1}, x_{1} B_{2}}, H_{f}^{B_{1}, B_{2}}\right)
$$

Solving exponential polynomials

Given $f\left(u_{1}, \ldots, u_{n}\right)=\sum_{i=1}^{r} \lambda_{i} e^{u_{1} \gamma_{i, 1}+\cdots+u_{n} \gamma_{i, n}}=\sum_{i=1}^{r} \lambda_{i} \zeta_{i, 1}^{u_{1}} \cdots \zeta_{i, n}^{u_{n}}\left(\zeta_{i, j}=e^{\gamma_{i, j}}\right)$, find the points $\left(\zeta_{i, 1}, \ldots, \zeta_{i, n}\right) \in \mathbb{C}^{n}$ and $\lambda_{i} \in \mathbb{C}$ for $i=1 \ldots, r$.
(1) Find sets of monomials $B_{1}=\left\{\mathbf{x}^{\beta_{1}}, \ldots, \mathbf{x}^{\beta_{r}}\right\}$,

$$
\begin{aligned}
& B_{2}=\left\{\mathbf{x}^{\beta_{1}^{\prime}}, \ldots, \mathbf{x}^{\beta_{r}^{\prime}}\right\}=\left\{1, x_{1}, x_{2}, \ldots\right\} \subset \mathbb{N}^{n} \text { s.t. } \\
& H_{f}^{B_{1}, B_{2}}=\left(f\left(\beta_{i}+\beta_{j}^{\prime}\right)\right)_{1 \leqslant i, j \leqslant r} \text { is invertible; }
\end{aligned}
$$

(2) Compute the generalize eigenvalues $\zeta_{i, 1}$ and eigenvectors \mathbf{v}_{i} of

$$
\left(H_{f}^{B_{1}, x_{1} B_{2}}, H_{f}^{B_{1}, B_{2}}\right) ;
$$

(3) Deduce from $\mathbf{w}_{i}=H_{f}^{B_{1}, B_{2}} \mathbf{v}_{i}=\mathbf{w}_{i, 1}\left[1, \zeta_{i, 1}, \zeta_{i, 2}, \ldots\right]$ the coordinates $\zeta_{i, 1}, \ldots, \zeta_{i, n}$ of the "roots".

Solving exponential polynomials

Given $f\left(u_{1}, \ldots, u_{n}\right)=\sum_{i=1}^{r} \lambda_{i} e^{u_{1} \gamma_{i, 1}+\cdots+u_{n} \gamma_{i, n}}=\sum_{i=1}^{r} \lambda_{i} \zeta_{i, 1}^{u_{1}} \cdots \zeta_{i, n}^{u_{n}}\left(\zeta_{i, j}=e^{\gamma_{i, j}}\right)$, find the points $\left(\zeta_{i, 1}, \ldots, \zeta_{i, n}\right) \in \mathbb{C}^{n}$ and $\lambda_{i} \in \mathbb{C}$ for $i=1 \ldots, r$.
(1) Find sets of monomials $B_{1}=\left\{\mathbf{x}^{\beta_{1}}, \ldots, \mathbf{x}^{\beta_{r}}\right\}$,

$$
\begin{aligned}
& B_{2}=\left\{\mathbf{x}^{\beta_{1}^{\prime}}, \ldots, \mathbf{x}^{\beta_{r}^{\prime}}\right\}=\left\{1, x_{1}, x_{2}, \ldots\right\} \subset \mathbb{N}^{n} \text { s.t. } \\
& H_{f}^{B_{1}, B_{2}}=\left(f\left(\beta_{i}+\beta_{j}^{\prime}\right)\right)_{1 \leqslant i, j \leqslant r} \text { is invertible; }
\end{aligned}
$$

(2) Compute the generalize eigenvalues $\zeta_{i, 1}$ and eigenvectors \mathbf{v}_{i} of

$$
\left(H_{f}^{B_{1}, x_{1} B_{2}}, H_{f}^{B_{1}, B_{2}}\right) ;
$$

(3) Deduce from $\mathbf{w}_{i}=H_{f}^{B_{1}, B_{2}} \mathbf{v}_{i}=\mathbf{w}_{i, 1}\left[1, \zeta_{i, 1}, \zeta_{i, 2}, \ldots\right]$ the coordinates $\zeta_{i, 1}, \ldots, \zeta_{i, n}$ of the "roots".
(Generalized Prony's method)

Example

- Let $f\left(u_{1}, u_{2}\right)=1+2^{u_{1}+u_{2}}+3^{u_{2}}$.
- Take $B=\left\{1, x_{1}, x_{2}\right\}($ or $\{(0,0),(1,0),(0,1)\})$.

$$
\begin{aligned}
& H_{f}^{B, B}=\left[\begin{array}{lll}
f(0,0) & f(1,0) & f(0,1) \\
f(1,0) & f(2,0) & f(1,1) \\
f(0,1) & f(1,1) & f(0,2)
\end{array}\right]=\left[\begin{array}{ccc}
3 & 6 & 4 \\
6 & 14 & 8 \\
4 & 8 & 6
\end{array}\right], \\
& H_{f}^{B, x_{1} B}=\left[\begin{array}{ccc}
6 & 14 & 8 \\
14 & 36 & 18 \\
8 & 18 & 12
\end{array}\right] .
\end{aligned}
$$

- Compute the generalized eigenvectors for the eigenvalues $(1,2,3)$

$$
V=\left[\begin{array}{ccc}
2 & -1 & 0 \\
-1 / 2 & 0 & 1 / 2 \\
-1 / 2 & 1 & -1 / 2
\end{array}\right] \text { and } H_{f}^{B, B} V=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & 3 \\
1 & 2 & 1
\end{array}\right]
$$

- This yields the roots $(1,1),(2,2),(3,1)$.

Real radical computation

Let $F=\left\{f_{1}, \ldots, f_{s}\right\} \subset \mathbb{R}[\mathbf{x}]$.
Let $S \subset R=\mathbb{R}[\mathbf{x}]$ with $1 \in S, G \subseteq\langle S \cdot S\rangle$, and

$$
\mathcal{L}_{S, G, \ngtr}:=\left\{\Lambda \in\langle S \cdot S\rangle^{*} \mid \Lambda(g)=0, \forall g \in G \text { and } \Lambda\left(p^{2}\right) \geq 0, \forall p \in S\right\} .
$$

Real radical computation

Let $F=\left\{f_{1}, \ldots, f_{s}\right\} \subset \mathbb{R}[\mathbf{x}]$.
Let $S \subset R=\mathbb{R}[\mathbf{x}]$ with $1 \in S, G \subseteq\langle S \cdot S\rangle$, and

$$
\mathcal{L}_{S, G, \succcurlyeq}:=\left\{\Lambda \in\langle S \cdot S\rangle^{*} \mid \Lambda(g)=0, \forall g \in G \text { and } \Lambda\left(p^{2}\right) \geq 0, \forall p \in S\right\} .
$$

Repeat

(1) Compute a rewriting family $G \subset(F)$ and choose S in a basis for G;
(2) Compute a generic element Λ^{*} of $\mathcal{L}_{S, G, \succcurlyeq}$;
(3) Compute ker $H_{\Lambda^{*}}^{S, S}$ and add its generators to F;
(4) Update the rewriting family G of F; until ker $H_{\Lambda^{*}}=\{0\}$ and G is a border basis for $B=S$.

Real radical computation

Let $F=\left\{f_{1}, \ldots, f_{s}\right\} \subset \mathbb{R}[\mathbf{x}]$.
Let $S \subset R=\mathbb{R}[\mathbf{x}]$ with $1 \in S, G \subseteq\langle S \cdot S\rangle$, and

$$
\mathcal{L}_{S, G, \succcurlyeq}:=\left\{\Lambda \in\langle S \cdot S\rangle^{*} \mid \Lambda(g)=0, \forall g \in G \text { and } \Lambda\left(p^{2}\right) \geq 0, \forall p \in S\right\} .
$$

Repeat

(1) Compute a rewriting family $G \subset(F)$ and choose S in a basis for G;
(2) Compute a generic element Λ^{*} of $\mathcal{L}_{S, G, \succcurlyeq}$;
(3) Compute ker $H_{\Lambda^{*}}^{S, S}$ and add its generators to F;
(4) Update the rewriting family G of F;
until ker $H_{\Lambda^{*}}=\{0\}$ and G is a border basis for $B=S$.
Computation of Λ^{*} by solving of a SDP problem by an interior point method (SeDuMi, CSDP, SDPA, ...)

Real radical computation

Let $F=\left\{f_{1}, \ldots, f_{s}\right\} \subset \mathbb{R}[\mathbf{x}]$.
Let $S \subset R=\mathbb{R}[\mathbf{x}]$ with $1 \in S, G \subseteq\langle S \cdot S\rangle$, and

$$
\mathcal{L}_{S, G, \succcurlyeq}:=\left\{\Lambda \in\langle S \cdot S\rangle^{*} \mid \Lambda(g)=0, \forall g \in G \text { and } \Lambda\left(p^{2}\right) \geq 0, \forall p \in S\right\} .
$$

Repeat

(1) Compute a rewriting family $G \subset(F)$ and choose S in a basis for G;
(2) Compute a generic element Λ^{*} of $\mathcal{L}_{S, G, \succcurlyeq}$;
(3) Compute ker $H_{\Lambda^{*}}^{S, S}$ and add its generators to F;
(4) Update the rewriting family G of F;
until ker $H_{\Lambda^{*}}=\{0\}$ and G is a border basis for $B=S$.
Computation of Λ^{*} by solving of a SDP problem by an interior point method (SeDuMi, CSDP, SDPA, ...)
Applies for zero-dimensional real radical.

Real radical computation

Let $F=\left\{f_{1}, \ldots, f_{s}\right\} \subset \mathbb{R}[\mathbf{x}]$.
Let $S \subset R=\mathbb{R}[\mathbf{x}]$ with $1 \in S, G \subseteq\langle S \cdot S\rangle$, and

$$
\mathcal{L}_{S, G, \succcurlyeq}:=\left\{\Lambda \in\langle S \cdot S\rangle^{*} \mid \Lambda(g)=0, \forall g \in G \text { and } \Lambda\left(p^{2}\right) \geq 0, \forall p \in S\right\} .
$$

Repeat

(1) Compute a rewriting family $G \subset(F)$ and choose S in a basis for G;
(2) Compute a generic element Λ^{*} of $\mathcal{L}_{S, G, \succcurlyeq}$;
(3) Compute ker $H_{\Lambda^{*}}^{S, S}$ and add its generators to F;
(4) Update the rewriting family G of F;
until ker $H_{\Lambda^{*}}=\{0\}$ and G is a border basis for $B=S$.
Computation of Λ^{*} by solving of a SDP problem by an interior point method (SeDuMi, CSDP, SDPA, ...)
Applies for zero-dimensional real radical.
Output a border basis of $\sqrt[\mathbb{R}]{(F)}$.

Bezoutian

- $f_{0}, f_{1}, \ldots, f_{n} \in R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]=\mathbb{K}[\mathbf{x}]$.

Bezoutian

- $f_{0}, f_{1}, \ldots, f_{n} \in R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]=\mathbb{K}[\mathbf{x}]$.
- $R \otimes R=\mathbb{K}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]=\mathbb{K}[\mathbf{x}, \mathbf{y}]$.
- $X_{(0)}=\left(x_{1}, \ldots, x_{n}\right), X_{(1)}=\left(y_{1}, x_{2} \ldots, x_{n}\right), \ldots, X_{(n)}=\left(y_{1}, \ldots, y_{n}\right)$.
- $\partial_{i}(P)=\frac{P\left(X_{(i)}\right)-P\left(X_{(i-1)}\right)}{y_{i}-x_{i}}$.

Bezoutian

- $f_{0}, f_{1}, \ldots, f_{n} \in R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]=\mathbb{K}[\mathbf{x}]$.
- $R \otimes R=\mathbb{K}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]=\mathbb{K}[\mathbf{x}, \mathbf{y}]$.
- $X_{(0)}=\left(x_{1}, \ldots, x_{n}\right), X_{(1)}=\left(y_{1}, x_{2} \ldots, x_{n}\right), \ldots, X_{(n)}=\left(y_{1}, \ldots, y_{n}\right)$.
- $\partial_{i}(P)=\frac{P\left(X_{(i)}\right)-P\left(X_{(i-1)}\right)}{y_{i}-x_{i}}$.

Bezoutian polynomial:

$$
\Theta_{f_{0}, f_{1}, \ldots, f_{n}}=\left|\begin{array}{cccc}
f_{0}\left(X_{(0)}\right) & \partial_{1}\left(f_{0}\right) & \cdots & \partial_{n}\left(f_{0}\right) \\
\vdots & \vdots & & \vdots \\
f_{n}\left(X_{(0)}\right) & \partial_{1}\left(f_{n}\right) & \cdots & \partial_{n}\left(f_{n}\right)
\end{array}\right|=\sum_{\alpha, \beta} \theta_{\alpha, \beta} \mathbf{x}^{\alpha} \mathbf{y}^{\beta}
$$

Bezoutian

- $f_{0}, f_{1}, \ldots, f_{n} \in R=\mathbb{K}\left[x_{1}, \ldots, x_{n}\right]=\mathbb{K}[\mathbf{x}]$.
- $R \otimes R=\mathbb{K}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right]=\mathbb{K}[\mathbf{x}, \mathbf{y}]$.
- $X_{(0)}=\left(x_{1}, \ldots, x_{n}\right), X_{(1)}=\left(y_{1}, x_{2} \ldots, x_{n}\right), \ldots, X_{(n)}=\left(y_{1}, \ldots, y_{n}\right)$.
- $\partial_{i}(P)=\frac{P\left(X_{(i)}\right)-P\left(X_{(i-1)}\right)}{y_{i}-x_{i}}$.

Bezoutian polynomial:

$$
\Theta_{f_{0}, f_{1}, \ldots, f_{n}}=\left|\begin{array}{cccc}
f_{0}\left(X_{(0)}\right) & \partial_{1}\left(f_{0}\right) & \cdots & \partial_{n}\left(f_{0}\right) \\
\vdots & \vdots & & \vdots \\
f_{n}\left(X_{(0)}\right) & \partial_{1}\left(f_{n}\right) & \cdots & \partial_{n}\left(f_{n}\right)
\end{array}\right|=\sum_{\alpha, \beta} \theta_{\alpha, \beta} \mathbf{x}^{\alpha} \mathbf{y}^{\beta}
$$

Bezoutian matrix: $B_{f_{0}, \ldots, f_{n}}=B_{f_{0}}=\left(\theta_{\alpha, \beta}\right)_{\alpha, \beta}$.

Reduction

Apply the pencil reduction algorithm applied to $\left[B_{1}, B_{x_{1}}, \ldots, B_{x_{n}}\right]$ in order to obtain matrices

$$
\left[\Delta_{0}, \Delta_{1}, \ldots, \Delta_{n}\right]
$$

such that

- Δ_{0} inversible,
- $\Delta_{i}(\mathbf{x}, \mathbf{y}) \equiv x_{i} \Delta_{0}(\mathbf{x}, \mathbf{y}) \bmod I(\mathbf{x}) \equiv y_{i} \Delta_{0}(\mathbf{x}, \mathbf{y}) \bmod I(\mathbf{y})$.

Reduction

Apply the pencil reduction algorithm applied to $\left[B_{1}, B_{x_{1}}, \ldots, B_{x_{n}}\right]$ in order to obtain matrices

$$
\left[\Delta_{0}, \Delta_{1}, \ldots, \Delta_{n}\right]
$$

such that

- Δ_{0} inversible,
- $\Delta_{i}(\mathbf{x}, \mathbf{y}) \equiv x_{i} \Delta_{0}(\mathbf{x}, \mathbf{y}) \bmod I(\mathbf{x}) \equiv y_{i} \Delta_{0}(\mathbf{x}, \mathbf{y}) \bmod I(\mathbf{y})$.

Let I_{0} be the intersection of primary components of the isolated points of $I=\left(f_{1}, \ldots, f_{n}\right)$.

Reduction

Apply the pencil reduction algorithm applied to $\left[B_{1}, B_{x_{1}}, \ldots, B_{X_{n}}\right]$ in order to obtain matrices

$$
\left[\Delta_{0}, \Delta_{1}, \ldots, \Delta_{n}\right]
$$

such that

- Δ_{0} inversible,
- $\Delta_{i}(\mathbf{x}, \mathbf{y}) \equiv x_{i} \Delta_{0}(\mathbf{x}, \mathbf{y}) \bmod I(\mathbf{x}) \equiv y_{i} \Delta_{0}(\mathbf{x}, \mathbf{y}) \bmod I(\mathbf{y})$.

Let I_{0} be the intersection of primary components of the isolated points of $I=\left(f_{1}, \ldots, f_{n}\right)$.
Bezoutian conjecture: The matrices $M_{i}=\Delta_{0}^{-1} \Delta_{i}$ are the matrices of multiplication by x_{i} in the basis B of R / I_{0} where B is the set of monomials indexing the columns of Δ_{0}. (conjecture in [C'95], proved under some hypothesis on B in [M'05]).

Reduction

Apply the pencil reduction algorithm applied to $\left[B_{1}, B_{x_{1}}, \ldots, B_{x_{n}}\right]$ in order to obtain matrices

$$
\left[\Delta_{0}, \Delta_{1}, \ldots, \Delta_{n}\right]
$$

such that

- Δ_{0} inversible,
- $\Delta_{i}(\mathbf{x}, \mathbf{y}) \equiv x_{i} \Delta_{0}(\mathbf{x}, \mathbf{y}) \bmod I(\mathbf{x}) \equiv y_{i} \Delta_{0}(\mathbf{x}, \mathbf{y}) \bmod I(\mathbf{y})$.

Let I_{0} be the intersection of primary components of the isolated points of $I=\left(f_{1}, \ldots, f_{n}\right)$.
Bezoutian conjecture: The matrices $M_{i}=\Delta_{0}^{-1} \Delta_{i}$ are the matrices of multiplication by x_{i} in the basis B of R / I_{0} where B is the set of monomials indexing the columns of Δ_{0}. (conjecture in [C'95], proved under some hypothesis on B in [M'05]). The flat extension theorem applies to a $\tau \in R^{*}$ such that $H_{\tau}=\Delta_{0}$ (another proof of the conjecture).

Reduction

Apply the pencil reduction algorithm applied to $\left[B_{1}, B_{x_{1}}, \ldots, B_{x_{n}}\right]$ in order to obtain matrices

$$
\left[\Delta_{0}, \Delta_{1}, \ldots, \Delta_{n}\right]
$$

such that

- Δ_{0} inversible,
- $\Delta_{i}(\mathbf{x}, \mathbf{y}) \equiv x_{i} \Delta_{0}(\mathbf{x}, \mathbf{y}) \bmod I(\mathbf{x}) \equiv y_{i} \Delta_{0}(\mathbf{x}, \mathbf{y}) \bmod I(\mathbf{y})$.

Let I_{0} be the intersection of primary components of the isolated points of $I=\left(f_{1}, \ldots, f_{n}\right)$.
Bezoutian conjecture: The matrices $M_{i}=\Delta_{0}^{-1} \Delta_{i}$ are the matrices of multiplication by x_{i} in the basis B of R / I_{0} where B is the set of monomials indexing the columns of Δ_{0}. (conjecture in [C'95], proved under some hypothesis on B in [M'05]). The flat extension theorem applies to a $\tau \in R^{*}$ such that $H_{\tau}=\Delta_{0}$ (another proof of the conjecture).
The linear form $\tilde{\tau}$ extending τ is the residue of f_{1}, \ldots, f_{n}.

Alessandra Bernardi, Jérôme Brachat, Pierre Comon, and Bernard Mourrain. General tensor decomposition, moment matrices and applications.
Journal of Symbolic Computation, (0):-, 2012.

Jérôme Brachat, Pierre Comon, Bernard Mourrain, and Elias P. Tsigaridas. Symmetric tensor decomposition.
Linear Algebra and Applications, 433(11-12):1851-1872, 2010.
Jean-Bernard Lasserre, Monique Laurent, Bernard Mourrain, Philipp Rostalski, and Philippe Trébuchet.
Moment matrices, border bases and real radical computation.
Journal of Symbolic Computation, (0):-, 2012.
Monique Laurent and Bernard Mourrain.
A Sparse Flat Extension Theorem for Moment Matrices.
Archiv der Mathematik, 93:87-98, 2009.
Bernard Mourrain.
Bezoutian and quotient ring structure.
Journal of Symbolic Computation, 39(3-4):397-415, March 2005.
Bernard Mourrain and Victor Y. Pan.
Multivariate polynomials, duality and structured matrices.
Journal of Complexity, 16(1):110-180, 2000.

Thanks for your attention

