A Formal Proof of Sasaki-Murao Algorithm (jww. Thierry Coquand and Vincent Siles)

Anders Mörtberg - mortberg@chalmers.se

September 20, 2012

Introduction

- Want: Polynomial time algorithm for computing the determinant of a matrix with coefficients in any commutative ring (not necessarily with division)
- Formally verified implementation in CoQ

Naive algorithm

- Laplace expansion: Express the determinant in terms of determinants of submatrices

$$
\begin{aligned}
\left|\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right| & =a\left|\begin{array}{ll}
e & f \\
h & i
\end{array}\right|-b\left|\begin{array}{cc}
d & f \\
g & i
\end{array}\right|+c\left|\begin{array}{cc}
d & e \\
g & h
\end{array}\right| \\
& =a(e i-h f)-b(d i-f g)+c(d g-e g) \\
& =a e i-a h f-b d i+b f g+c d g-c e g
\end{aligned}
$$

- Not suited for computation (factorial complexity)

Gaussian elimination

- Gaussian elimination: Convert the matrix into triangular form using elementary operations
- Polynomial time algorithm
- Relies on division - Is there a polynomial time algorithm not using division?

Division free Gaussian algorithm

- We want an operation doing:

$$
\left(\begin{array}{cc}
a & l \\
c & M
\end{array}\right) \rightsquigarrow\left(\begin{array}{cc}
a & l \\
0 & M^{\prime}
\end{array}\right)
$$

Division free Gaussian algorithm

- We want an operation doing:

$$
\left(\begin{array}{cc}
a & l \\
c & M
\end{array}\right) \rightsquigarrow\left(\begin{array}{cc}
a & l \\
0 & M^{\prime}
\end{array}\right)
$$

- We can do:

$$
\left(\begin{array}{cc}
a & l \\
c & M
\end{array}\right) \rightsquigarrow\left(\begin{array}{cc}
a & l \\
a c & a M
\end{array}\right) \rightsquigarrow\left(\begin{array}{cc}
a & l \\
0 & a M-c l
\end{array}\right)
$$

Division free Gaussian algorithm

- We want an operation doing:

$$
\left(\begin{array}{cc}
a & l \\
c & M
\end{array}\right) \rightsquigarrow\left(\begin{array}{cc}
a & l \\
0 & M^{\prime}
\end{array}\right)
$$

- We can do:

$$
\left(\begin{array}{cc}
a & l \\
c & M
\end{array}\right) \rightsquigarrow\left(\begin{array}{cc}
a & l \\
a c & a M
\end{array}\right) \rightsquigarrow\left(\begin{array}{cc}
a & l \\
0 & a M-c l
\end{array}\right)
$$

- Problems:
- Computes $a^{n} \cdot d e t$
- $a=0$?
- Exponential growth of coefficients

Bareiss algorithm

- Erwin Bareiss: "Sylvester's Identity and Multistep Integer-Preserving Gaussian Elimination" (1968)
- Compute determinant of integer matrices in polynomial time
- Only do divisions that are guaranteed to be exact

Bareiss algorithm: Example

$$
\left(\begin{array}{llll}
2 & 2 & 4 & 5 \\
5 & 8 & 9 & 3 \\
1 & 2 & 8 & 5 \\
6 & 6 & 7 & 1
\end{array}\right)
$$

Bareiss algorithm: Example

$$
\left(\begin{array}{cccc}
2 & 2 & 4 & 5 \\
5 & 8 & 9 & 3 \\
1 & 2 & 8 & 5 \\
6 & 6 & 7 & 1
\end{array}\right) \rightsquigarrow\left(\begin{array}{cccc}
2 & 2 & 4 & 5 \\
0 & 2 * 8-5 * 2 & 2 * 9-5 * 4 & 2 * 3-5 * 5 \\
0 & 2 * 2-1 * 2 & 2 * 8-1 * 4 & 2 * 5-1 * 5 \\
0 & 2 * 6-6 * 2 & 2 * 7-6 * 4 & 2 * 1-6 * 5
\end{array}\right)
$$

Bareiss algorithm: Example

$$
=\left(\begin{array}{cccc}
2 & 2 & 4 & 5 \\
0 & 6 & -2 & -19 \\
0 & 2 & 12 & 5 \\
0 & 0 & -10 & -28
\end{array}\right)
$$

Bareiss algorithm: Example

$$
\rightsquigarrow\left(\begin{array}{cccc}
2 & 2 & 4 & 5 \\
0 & 6 & -2 & -19 \\
0 & 0 & 6 * 12-2 *(-2) & 6 * 5-2 *(-19) \\
0 & 0 & 6 *(-10)-0 *(-2) & 6 *(-28)-0 *(-19)
\end{array}\right)
$$

Bareiss algorithm: Example

$$
=\left(\begin{array}{cccc}
2 & 2 & 4 & 5 \\
0 & 6 & -2 & -19 \\
0 & 0 & 76 & 68 \\
0 & 0 & -60 & -168
\end{array}\right)
$$

Bareiss algorithm: Example

$$
w^{\prime}\left(\begin{array}{cccc}
2 & 2 & 4 & 5 \\
0 & 6 & -2 & -19 \\
0 & 0 & 76 / 2 & 68 / 2 \\
0 & 0 & -60 / 2 & -168 / 2
\end{array}\right)
$$

Bareiss algorithm: Example

$$
=\left(\begin{array}{cccc}
2 & 2 & 4 & 5 \\
0 & 6 & -2 & -19 \\
0 & 0 & 38 & 34 \\
0 & 0 & -30 & -84
\end{array}\right)
$$

Bareiss algorithm: Example

$$
\rightsquigarrow\left(\begin{array}{cccc}
2 & 2 & 4 & 5 \\
0 & 6 & -2 & -19 \\
0 & 0 & 38 & 34 \\
0 & 0 & 0 & 38 *(-84)-(-30) * 34
\end{array}\right)
$$

Bareiss algorithm: Example

$$
=\left(\begin{array}{cccc}
2 & 2 & 4 & 5 \\
0 & 6 & -2 & -19 \\
0 & 0 & 38 & 34 \\
0 & 0 & 0 & -2172
\end{array}\right)
$$

Bareiss algorithm: Example

$$
\rightsquigarrow^{\prime}\left(\begin{array}{cccc}
2 & 2 & 4 & 5 \\
0 & 6 & -2 & -19 \\
0 & 0 & 38 & 34 \\
0 & 0 & 0 & -2172 / 6
\end{array}\right)
$$

Bareiss algorithm: Example

$$
=\left(\begin{array}{cccc}
2 & 2 & 4 & 5 \\
0 & 6 & -2 & -19 \\
0 & 0 & 38 & 34 \\
0 & 0 & 0 & -362
\end{array}\right)
$$

Bareiss algorithm: Example

$$
\left|\begin{array}{llll}
2 & 2 & 4 & 5 \\
5 & 8 & 9 & 3 \\
1 & 2 & 8 & 5 \\
6 & 6 & 7 & 1
\end{array}\right|=-362
$$

Bareiss algorithm

- $a=0$?
- Generalize to any commutative ring?

Bareiss algorithm

- $a=0$?
- Generalize to any commutative ring?
- No, we need explicit divisibility
- Examples: $\mathbb{Z}, k[x], \mathbb{Z}[x, y], k[x, y, z], \ldots$

Sasaki-Murao algorithm

- Apply the algorithm to $x \cdot I d-M$
- Compute on $R[x]$ with pseudo-division
- Put $x=0$ in the result

Sasaki-Murao algorithm

```
dvd_step :: R[x] -> Matrix R[x] -> Matrix R[x]
dvd_step g M = mapM (\x -> g | x) M
sasaki_rec :: R[x] -> Matrix R[x] -> R[x]
sasaki_rec g M = case M of
    Empty -> g
    Cons a l c M ->
        let M' = a * M - c * l in
        sasaki_rec a (dvd_step g M')
```

sasaki :: Matrix R -> R[x]
sasaki M = sasaki_rec 1 (x * Id - M)

Sasaki-Murao algorithm

- Very simple functional program!
- No problem with 0 (x along the diagonal)
- Get characteristic polynomial for free
- Works for any commutative ring
- Standard correctness proof is complicated - relies on Sylvester identities

Sasaki-Murao algorithm: Correctness proof

Invariant for recursive call (sasaki_rec g M):

- g is regular
- g^{k} divides all $k+1$ minors of M
- All principal minors of M are regular

Some Sylvester identities are corollaries of our proof

Sasaki-Murao algorithm: Computations in CoQ

```
Definition M10 := (* Random 10x10 matrix *).
```

Time Eval vm_compute in sasaki 10 M10.
= (-406683286186860) \% Z
Finished transaction in 1. secs (1.316581u,0.s)
Definition M20 := (* Random 20x20 matrix *).
Time Eval vm_compute in sasaki 20 M20.
= 75728050107481969127694371861\%Z
Finished transaction in 63. secs
(62.825904u, 0.016666s)

Sasaki-Murao algorithm: Computations with Haskell

> time ./Sasaki 10
-406683286186860
real 0m0.009s
> time ./Sasaki 20
75728050107481969127694371861
real 0m0.267s
> time ./Sasaki 50
-3353887303469... (73 more digits...)
real 1m6.159s

Conclusions

- Sasaki-Murao algorithm: Simple functional program for computing determinant over any commutative ring
- (Arguably) Simpler proof and CoQ formalization:

A Formal Proof of Sasaki-Murao Algorithm ${ }^{1}$ To appear in Journal of Formalized Reasoning

[^0]
Thank you!

This work has been partially funded by the FORMATH project, nr. 243847, of the FET program within the 7th Framework program of the European Commission

[^0]: ${ }^{1}$ http://www.cse.chalmers.se/~mortberg/papers/det.pdf

