Effective models for constructive mathematics

Maria Emilia Maietti University of Padova

MAP 2012

Konstanz, Germany

Aim of our talk

our view - jww G. Sambin- to meet MAP goal:

 \Downarrow

to bridge the gap between conceptual (abstract)			
and computational (constructive) mathematics			
via a	computational understanding	of	abstract mathematics.

1. develop constructive mathematics:

take INTUITIONISTIC LOGIC + set theory NO CLASSIC LOGIC = NO proof by contradiction!!

2. build a foundation, actually a two-level foundation, to formalize it

CLASSICAL LOGIC =

Abstract of our talk

to meet MAP goal:

- (jww G. Sambin) need of a TWO LEVEL theory
 + example: our minimalist foundation
- categorical/algebraic description of the link between the TWO LEVELS (jww G. Rosolini)
- two effective/computational models for our foundation:
 - one to extract the computational contents of proofs
 - another for embedding constructive proofs in classical set theory

the need of a two-level foundation (jww G. Sambin)

from the need of putting together:

ABSTRACTION + COMPUTATIONAL IMPLEMENTATION of maths

example of abstraction: quotients!!

the need of a two-level foundation (jww G. Sambin)

example of levels to describe reals:

algebraic description: Archimedean complete totally ordered field costructive description: quotient of decimal approximations of reals for ex: 1.39999999... = 1.4computer description

what is a constructive foundation ?

a predicative theory = theory with NO IMPREDICATIVE constructions \Rightarrow for ex. power of subsets is a COLLECTION NOT a set

predicative set theory makes essential use of 2 sizes: SETS + COLLECTIONS why a SINGLE theory is NOT enough

ideal constructive theory: intensional + predicative + constructive
 (with decidable equality of sets and elements)
 + description abstraction/quotients
 (with undecidable equality of sets and elements)

more formally:in [M.-Sambin'05] the need of two-levels followsfrom consistency with MATHEMATICAL PRINCIPLESasAxiom of Choice + Formal Church Thesis

relevant examples of constructive foundations:

 Martin-Löf's intensional
 - reliable programming language

 type theory:
 - YES explicit computational contents

 - complex setoid model to handle
 - complex setoid model to handle

 extensional abstractions
 - NO natural interpretation in classical

 ZFC theory preserving propositions

type theory: suitable for mathematicians that are logician/computer scientist

suitable for all mathematicians

first example of two-level foundation?

to meet MAP goal

Aczel's CZF (usual math language)

 \Downarrow (interpreted in)

Martin-Löf's type theory (reliable programming language)

use of choice principles is relevant for some axioms.

our notion of two-level foundation

from [M.-Sambin'05], [M.'09]

a constructive foundation

a theory with two levels

=

an intensional level enjoying extraction of programs from proofs

+

an extensional level obtained by ABSTRACTION from the intensional one

via a **QUOTIENT** completion

the link between levels	is local and modular	
	preserves the logic	
	follows Sambin's forget-restore principle	

NO use of choice principles to interpret the extensional level

the two-level foundation needs an extra level!

two-level foundation	extensional level	
	intensional level	
for computer extraction	realizability level	

intensional level \neq realizability level

for minimality of the extensional level!

for ex: "all functions are recursive" holds at the realizability level but canNOT be lifted at the extensional level for compatibility with classical extensional levels

Plurality of constructive foundations \Rightarrow need of a minimalist foundation

	classical	constructive
	ONE standard	NO standard
impredicative	Zermelo-Fraenkel set theory	internal theory of topoi Coquand's Calculus of Constructions
predicative	Feferman's explicit maths	Aczel's CZF Martin-Löf's type theory Feferman's constructive expl. maths
what common core ??		

Aczel's CZF is not the minimal theory!

Our two level minimalist constructive foundation

from [M.-Sambin'05],[M.'09]

emTT	=	extensional minimalist level
$\Downarrow \mathcal{I}$		(interpretation via quotient completion)
mtt	=	intensional minimalist type theory
		predicative Coq

 $\label{eq:emtt} \mbox{emtt} \Rightarrow \mbox{clearly interpretable in} \begin{cases} \mbox{Aczel's CZF} \\ \mbox{Feferman's predicative classical set theory} \end{cases}$

Our two level minimalist constructive foundation

from [M.-Sambin'05],[M.'09]

emTT	=	extensional minimalist level
$\Downarrow \mathcal{I}$		(interpretation via quotient completion)
mtt	=	intensional minimalist type theory
		predicative Coq

via interpretation	\mathcal{I}	
extensional equality of set	=	existence of canonical isomorphisms
(undecidable)		among intensional sets (with decidable equality)

Effective models of our minimalist intensional level

how to lift the effective models?

how to lift the effective models?

by investigatingthe link between the levels abstractly/categorically(jww G. Rosolini)with NEW notion of quotient completion

related to a doctrine

(and NOT just to a category!)

where doctrine= categorical interpretation of many sorted logic sorts are types

universal property of our quotient completion

from [M.-Rosolini'11]

Theorem: For any *elementary doctrine* \mathcal{E} there is a *quotient doctrine* $Q(\mathcal{E})$ in which it embeds with $\iota : \mathcal{E} \Rightarrow Q(\mathcal{E})$ such that

uniqueness is up to natural isomorphisms

how to lift the effective models?

via the categorical quotient completion

via

that is actually

Open issues

- Describe interpretation of an extensional type theory abstractly in a quotient doctrine
- Extend the effective models to modelling impredicative extensions.
- Connection of our effective models with Hyland's effective topos, Joyal's arithmetic universes...

References

- [M.'09] "A minimalist two-level foundation for constructive mathematic", 2009
- [M.'10] "Consistency of the minimalist foundation with Church thesis and Bar Induction", 2010
- [M.-Sambin'05] "Toward a minimalist foundation for constructive mathematics", 2005
- [M.-Rosolini'11] "Quotient completion for the foundation of constructive mathematics", 2011