Lift-and-project hierarchies for combinatorial problems

Monique Laurent CWI, Amsterdam & Tilburg University

MAP 2012, Konstanz

September 19, 2012

Typical combinatorial optimization problem:

max
$$c^T x$$
 s.t. $Ax \le b, x \in \{0, 1\}^n$

LP relaxation:

$$P := \{x \in \mathbb{R}^n \mid Ax \le b\}$$

Integral polytope to be found:

$$P_{l} := \operatorname{conv}(P \cap \{0,1\}^{n})$$

Goal: Procedure to construct a tighter, **tractable** relaxation P' such that

$$P_I \subseteq P' \subseteq P$$

leading to P_l after finitely many iterations.

Gomory-Chvátal closure of $P = \{x \in \mathbb{R}^n : Ax \leq b\}$ **:**

 $P' = \{x \mid u^T A x \leq \lfloor u^T b \rfloor \quad \forall u \geq 0 \text{ with } u^T A \text{ integer} \}.$

■ *P*′ is a polyhedron.

P_I is found after finitely many iterations. [Chvátal 1973]

• $O(n^2 \log n)$ iterations suffice if $P \subseteq [0, 1]^n$. [Eisenbrand-Schulz 1999]

But optimization over P' is hard! [Eisenbrand 1999]

This talk: Lift-and-project methods

We present several techniques to construct a *hierarchy* of **LP/SDP** relaxations:

 $P \supseteq P_1 \supseteq \ldots \supseteq P_n = P_l.$

 \sim Balas-Ceria-Cornuéjols hierarchy [1993]LP \sim Lovász-Schrijver N / N₊ operators [1991]LP / SDP \sim Sherali-Adams hierarchy [1990]LP \sim Lasserre hierarchy [2001]SDP

Common feature:

One can **optimize in polynomial time** over P_t for any **fixed** t.

Comparison:

 $\begin{array}{rcl} \mathsf{SA} \ \subseteq \ \mathsf{LS} \ \subseteq \ \mathsf{BCC} \\ \mathsf{Las} \ \subseteq \ \ \mathsf{SA} \ \cap \ \mathsf{LS}_+ \end{array}$

Great interest recently in such hierarchies:

- Polyhedral combinatorics: How many rounds are needed to find P₁? Which valid inequalities are satisfied after t rounds? New tractable instances?
- **Proof systems:** Use hierarchies as a model to generate inequalities and show e.g. $P_I = \emptyset$.
- **Complexity theory:** What is the integrality gap after *t* rounds? Can one use the hierarchy to get improved tractable approximations? Link to hardness of the problem?

Common background for the hierarchies: Moment theory and sums of squares of polynomials.

- Balas-Ceria-Cornuéjols, Lováz-Schrijver, Sherali-Adams constructions.
- Full lifting and moment matrices
- Lasserre hierarchy
- Application to matchings, stable sets, knapsack, max-cut
- Copositive hierarchy

$$P = \{x \in \mathbb{R}^n : Ax \le b\}$$

Homogenize P to the cone:

$$\tilde{P} = \{(x_0, x) \in \mathbb{R}^{n+1} : bx_0 - Ax \ge 0\}$$

$$= \{ y \in \mathbb{R}^{n+1} : g_{\ell}^{T} y \ge 0 \ (\ell = 1, \cdots, m) \}$$

writing $Ax \leq b$ as $a_{\ell}^T x \leq b_{\ell}$ $(\ell = 1, \cdots, m)$ and setting $g_{\ell} = \begin{pmatrix} b_{\ell} \\ -a_{\ell} \end{pmatrix}$.

Lift-and-project strategy

1. Generate new constraints: Multiply the system $Ax \le b$ by products of the constraints $x_i \ge 0$ and $1 - x_i \ge 0$.

 \rightsquigarrow Polynomial system in *x*.

Linearize (and lift) by introducing new variables y_I for products ∏_{i∈I} x_i and setting x_i² = x_i.

 \rightsquigarrow Linear system in (x, y).

3. **Project** back on the *x*-variable space.

 \rightsquigarrow LP relaxation P' satisfying

 $P_I \subseteq P' \subseteq P$.

The methods vary in the choice of the multipliers and of iterating.

The Balas-Ceria-Cornuéjols construction

1. **Multiply** the system $Ax \leq b$ by x_1 and $1 - x_1$:

$$x_1(b-Ax) \ge 0, \ (1-x_1)(b-Ax) \ge 0$$

2. **Linearize:** Set $y_i = x_1 x_i$, identify $y_1 = x_1$ and get the **lift**:

$$M_1 = \{(x, y): y_1 = x_1, bx_1 - Ay \ge 0, b(1 - x_1) - A(x - y) \ge 0\}$$

3. **Project** M_1 back to the x-subspace and get P_1 such that

 $P_I \subseteq P_1 \subseteq P$.

4. Iterate: use variable x_2 starting from P_1 and get P_{12} , etc.

Lemma

$$P_1 = \operatorname{conv}(P \cap \{x : x_1 = 0, 1\}).$$

Pf: "
$$\subseteq$$
": Write $x \in P_1$ as $x = x_1 \frac{y}{x_1} + (1 - x_1) \frac{x - y}{1 - x_1}$.
" \supseteq ": $x \in P \cap \{x : x_1 = 0, 1\} \Longrightarrow (x, x_1 x) \in M_1 \Longrightarrow x \in P_1$.

Corollary

Find P₁ after n steps.

The Lovász-Schrijver construction: *N*-operator

1. Multiply $Ax \leq b$ by x_i , $1 - x_i \quad \forall i \in [n]$ and get the system:

$$(b_{\ell}-a_{\ell}^{\mathsf{T}}x)x_{i}=g_{\ell}^{\mathsf{T}}\binom{1}{x}\binom{1}{x}e_{i}\geq 0 \quad \forall \ell,$$

$$(b_\ell-a_\ell^{\mathsf{T}}x)(1-x_i)=g_\ell^{\mathsf{T}}inom{1}{x}inom{1}{x}inom{1}{e_0-e_i}\geq 0 \ \ orall \ell.$$

2. **Linearize:** The new matrix variable $Y = \begin{pmatrix} 1 \\ x \end{pmatrix} \begin{pmatrix} 1 \\ x \end{pmatrix}^T$ belongs to

$$\mathcal{M}(\mathcal{P}) = \{Y \in \mathcal{S}_{n+1} \mid Y_{0i} = Y_{ii}, Y_{e_i}, Y_{e_i}, Y_{e_i} = \tilde{\mathcal{P}} \forall i \in [n]\}$$

3. Project:

$$N(P) = \left\{ x \in \mathbb{R}^n \mid \exists Y \in \mathcal{M}(P) \text{ s.t. } \begin{pmatrix} 1 \\ x \end{pmatrix} = Y e_0 \right\}$$

The Lovász-Schrijver construction: N_+ -operator

1. Multiply $Ax \le b$ by x_i , $1 - x_i \quad \forall i \in [n]$ and get the system:

$$(b_{\ell}-a_{\ell}^{\mathsf{T}}x)x_{i}=g_{\ell}^{\mathsf{T}}\begin{pmatrix}1\\x\end{pmatrix}\begin{pmatrix}1\\x\end{pmatrix}^{\mathsf{T}}e_{i}\geq0 \quad \forall \ell,$$

$$(b_{\ell}-a_{\ell}^{T}x)(1-x_{i})=g_{\ell}^{T}\binom{1}{x}\binom{1}{x}(e_{0}-e_{i})\geq 0 \quad \forall \ell.$$

2. **Linearize:** The new matrix variable $Y = \begin{pmatrix} 1 \\ x \end{pmatrix} \begin{pmatrix} 1 \\ x \end{pmatrix}^T$ belongs to

$$\mathcal{M}(P) = \{ Y \in \mathcal{S}_{n+1} \mid Y_{0i} = Y_{ii}, Ye_i, Y(e_0 - e_i) \in \tilde{P} \ \forall i \in [n] \},$$
$$\mathcal{M}_+(P) = \mathcal{M}(P) \cap \mathcal{S}_{n+1}^+.$$

3. Project:

$$N_+(P) = \left\{ x \in \mathbb{R}^n \mid \exists Y \in \mathcal{M}_+(P) \text{ s.t. } \begin{pmatrix} 1 \\ x \end{pmatrix} = Ye_0 \right\}$$

Properties of the N- and N_+ -operators

0. Iterate:
$$N^t(P) = N(N^{t-1}(P)), \ N^t_+(P) = N_+(N^{t-1}_+(P)).$$

1.
$$P_I \subseteq N_+(P) \subseteq N(P) \subseteq P$$
.

2.
$$N(P) \subseteq \bigcap_{i \in [n]} \operatorname{conv}(P \cap \{x \mid x_i = 0, 1\}).$$

$$3. N^n(P) = P_I.$$

 If one can optimize in polynomial time over P, then the same holds for N^t(P) and for N^t₊(P) for any **fixed** t.

Example

For the ℓ_1 -ball centered at e/2:

$$P = \left\{ x \in \mathbb{R}^V \mid \sum_{i \in I} x_i + \sum_{i \in V \setminus I} (1 - x_i) \ge \frac{1}{2} \quad \forall I \subseteq V \right\},\$$

$$P_I = \emptyset$$
, but $\frac{1}{2}e \in N^{n-1}_+(P)$.

Hence, **n** iterations of the N_+ operator are needed to find P_I .

Application to stable sets

- $P = FR(G) = \{x \in \mathbb{R}^V_+ \mid x_i + x_j \le 1 \ (ij \in E)\}$ $P_I = STAB(G): \text{ stable set polytope of } G = (V, E).$
 - 1. $Y \in \mathcal{M}(FR(G)) \Longrightarrow y_{ij} = 0$ for all edges $ij \in E$.
 - The clique inequality: ∑_{i∈Q} x_i ≤ 1 is valid for N₊(FR(G)),
 but its N-rank is |Q| 2. → SDP helps!
 - 3. The odd circuit inequalities: $\sum_{i \in V(C)} x_i \leq \frac{|C|-1}{2}$ are valid for N(FR(G)) and they determine it exactly.

4.
$$\frac{n}{\alpha(G)} - 2 \leq N$$
-rank $\leq n - \alpha(G) - 1$.

5. N_+ -rank $\leq \alpha(G)$ [tight for $G = \text{line graph of } K_{2p+1}$]

The Sherali-Adams construction

- 1. New polynomial constraints:
 - $x'(1-x)^{W\setminus I}(b-Ax) \ge 0$ for $I \subseteq W$ with |W| = t.
 - $x'(1-x)^{U\setminus I} \ge 0$ for $I \subseteq U$ with |U| = t+1.
- 2. Linearize & lift: Introduce new variables y_U for all $U \in \mathcal{P}_{t+1}(V)$, setting $y_i = x_i$ $(x_i^2 = x_i)$.
- 3. **Project** back on *x*-variables space and get $SA_t(P)$.

Lemma

- $\operatorname{SA}_1(P) = N(P).$
- $\operatorname{SA}_t(P) \subseteq N^t(P)$.

Full lifting

$$\begin{aligned} \mathbf{x} \in \{0,1\}^n & \rightsquigarrow \quad \mathbf{y}^{\mathbf{x}} = \left(\prod_{i \in I} x_i\right)_{I \subseteq V} \in \{0,1\}^{\mathcal{P}(V)} \\ \mathbf{y}^{\mathbf{x}} = (1, \mathbf{x}_1, ..., \mathbf{x}_n, \mathbf{x}_1 \mathbf{x}_2, ..., \mathbf{x}_{n-1} \mathbf{x}_n, ..., \prod_{i \in V} \mathbf{x}_i) \\ & \rightsquigarrow \quad \mathbf{Y} = \mathbf{y}^{\mathbf{x}} (\mathbf{y}^{\mathbf{x}})^T = \left(\prod_{i \in I} x_i \prod_{j \in J} \mathbf{x}_j\right)_{I,J \subseteq V} \end{aligned}$$

If $x \in P \cap \{0,1\}^n$ then $Y = y^x (y^x)^T$ satisfies:

1. $Y(\emptyset, \emptyset) = 1$. 2. Y(I, J) depends only on $I \cup J$ \rightsquigarrow moment matrix 3. $Y \succeq 0$. 4. $g_{\ell}(x)Y \succeq 0$ \rightsquigarrow localizing moment matrix

These conditions characterize $conv(y^x : x \in P \cap \{0, 1\}^n)$, thus P_I .

Full lifting via moment matrices

Definition

Given $y \in \mathbb{R}^{\mathcal{P}(V)}$ define:

- 1. The moment matrix $M_V(y) = (y_{I\cup J})_{I,J\in\mathcal{P}(V)}$.
- 2. The shifted vector $g * y = (y_I + \sum_i g_i y_{I \cup \{i\}})_{I \in \mathcal{P}(V)}$.

[linearize $g(x)y^{x} = (g(x)x^{I})_{I}$]

3. The localizing moment matrix $M_V(g * y)$.

Theorem

1.
$$\operatorname{conv}(y^{x}(y^{x})^{T} : x \in P \cap \{0, 1\})$$
 is equal to

 $\Delta_{P} = \{ y \in \mathbb{R}^{\mathcal{P}(V)} : y_{\emptyset} = 1, \ M_{V}(y) \succeq 0, \ M_{V}(g_{\ell} * y) \succeq 0 \ \forall \ell \}.$

- 2. P_I is the projection of Δ_P .
- 3. Δ_P is a polytope.

Proof

Definition

Let Z be the matrix with columns y^x for $x \in \{0, 1\}^n$.

Recall:

$$\Delta_P = \{ y \in \mathbb{R}^{\mathcal{P}(V)} : y_{\emptyset} = 1, \ M_V(y) \succeq 0, \ M_V(g_{\ell} * y) \succeq 0 \ \forall \ell \}.$$

Lemma $\Delta_P = \{ y \in \mathbb{R}^{\mathcal{P}(V)} : y_{\emptyset} = 1, \ Z^{-1}y \ge 0, \ (Z^{-1}y)_J = 0 \ if \ \chi^J \notin P \}$ $= \operatorname{conv}(y^x : x \in P \cap \{0, 1\}^n).$

Proof:

1. Z diagonalizes $M_V(y)$: $M_V(y) = Z \operatorname{diag}(Z^{-1}y) Z^T$.

Thus: $M_V(y) \succeq 0 \iff Z^{-1}y \ge 0$.

2. $M_V(g_\ell * y) \succeq 0 \iff (Z^{-1}y)_J g_\ell(\chi^J) \ge 0$ for all J.

Z is the 0/1 matrix indexed by $\mathcal{P}(V)$ with $Z(I, J) = 1, \quad Z^{-1}(I, J) = (-1)^{|J \setminus I|}$ if $I \subseteq J, 0$ otherwise.

$$Z = \begin{array}{cccc} \emptyset & 1 & 2 & 12 & & & \emptyset & 1 & 2 & 12 \\ 0 & 1 & 1 & 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 12 & 0 & 0 & 0 & 1 \end{array} \xrightarrow{\sim} Z^{-1} = \begin{array}{cccc} \emptyset & 1 & 2 & 12 & & \\ 1 & -1 & -1 & 1 & 0 & -1 \\ 0 & 1 & 0 & -1 & 0 & -1 \\ 0 & 0 & 1 & -1 & 0 & 1 \end{array}$$

$$M_V(y) = \begin{pmatrix} y_0 & y_1 & y_2 & y_{12} \\ y_1 & y_1 & y_{12} & y_{12} \\ y_2 & y_{12} & y_2 & y_{12} \\ y_{12} & y_{12} & y_{12} & y_{12} \end{pmatrix} \succeq 0 \Longleftrightarrow \begin{cases} y_\emptyset - y_1 - y_2 + y_{12} \ge 0 \\ y_1 - y_{12} \ge 0 \\ y_2 - y_{12} \ge 0 \\ y_{12} \ge 0 \end{cases}$$

Example

$$M_V(y) = \begin{pmatrix} y_{\emptyset} & y_1 & y_2 & y_{12} \\ y_1 & y_1 & y_{12} & y_{12} \\ y_2 & y_{12} & y_2 & y_{12} \\ y_{12} & y_{12} & y_{12} & y_{12} \end{pmatrix} \succeq 0 \Longleftrightarrow \begin{cases} y_{\emptyset} - y_1 - y_2 + y_{12} \ge 0 \\ y_1 - y_{12} \ge 0 \\ y_2 - y_{12} \ge 0 \\ y_{12} \ge 0 \end{cases}$$

Consider

$$P = \left\{ (x_1, x_2) : g(x) = \frac{3}{2} - x_1 - x_2 \ge 0 \right\}.$$

$$(g * y)_{\emptyset} = \frac{3}{2}y_{\emptyset} - y_1 - y_2, \ (g * y)_1 = \frac{3}{2}y_1 - y_1 - y_{12} = \frac{1}{2}y_1 - y_{12},$$

$$(g * y)_2 = \frac{1}{2}y_2 - y_{12}, \ (g * y)_{12} = \frac{3}{2}y_{12} - y_{12} - y_{12} = -\frac{1}{2}y_{12}.$$

 $(g * y)_{\emptyset} - (g * y)_1 - (g * y)_2 + (g * y)_{12} = \frac{3}{2}(y_{\emptyset} - y_1 - y_2).$

 $M_V(y), M_V(g*y) \succeq 0 \iff y_{12} = 0, \ y_1, y_2 \ge 0, \ y_{\emptyset} - y_1 - y_2 \ge 0.$

Recipe for SDP hierarchies

Get SDP hierarchies by **truncating** $M_V(y)$ and $M_V(g_\ell * y)$:

- Consider $M_U(y) = (y_{I \cup J})_{I,J \subseteq U}$, indexed by $\mathcal{P}(U)$ for $U \subseteq V$,
- or $M_t(y) = (y_{I \cup J})_{|I|,|J| \le t}$, indexed by $\mathcal{P}_t(V)$ for some $t \le n$.
 - 1. (local) Sherali-Adams relaxation $SA_t(P)$: $M_U(y) \succeq 0, \ M_W(g_\ell * y) \succeq 0 \ \forall U \in \mathcal{P}_{t+1}(V), \ W \in \mathcal{P}_t(V).$ \rightsquigarrow LP with variables y_l for all $l \in \mathcal{P}_{t+1}(V)$
 - 2. (global) Lasserre relaxation $L_t(P)$: $M_t(y) \succeq 0, \ M_{t-1}(g_{\ell} * y) \succeq 0.$ \rightsquigarrow SDP with variables y_l for all $l \in \mathcal{P}_{2t}(V)$

Clearly:

 $L_t(P) \subseteq SA_{t-1}(P).$

• The Lasserre hierarchy refines all other hierarchies:

 $L_t(P) \subseteq N^{t-1}_+(P) \cap SA_{t-1}(P).$

• $L_t(P)$ is tighter, but more expensive to compute:

- SDP for $L_t(P)$ involves one matrix of size $O(n^t)$.
- SDP for $N_{+}^{t-1}(P)$ involves $O(n^{t-2})$ matrices of size n+1.
- The N, N₊ operators apply to P convex.
 SA and Lasserre apply to P basic closed semi-algebraic.

Application to the knapsack problem

Given
$$a, b, c \ge 0$$
:
OPT = max $c^T x$ s.t. $a^T x \le b, x \in \{0, 1\}^n$
LP = max $c^T x$ s.t. $a^T x \le b, x \in [0, 1]^n$.
 $\frac{LP}{OPT} \le 2$.

Theorem (Karlin-Mathieu-Thach Nguyen 2011)

1. For the Sherali-Adams relaxation: $\frac{\max \text{ over } SA_t}{OPT} \ge \frac{2}{1+t/n}$. 2. For the Lasserre relaxation: $\frac{\max \text{ over } L_t}{OPT} \le 1 + \frac{1}{t-1}$.

The Lasserre hierarchy is more powerful than Sherali-Adams.

Application to the matching polytope

G = (V, E).

 $P = \{ x \in \mathbb{R}^{E}_{+} \mid x(\delta(v)) \leq 1 \ \forall v \in V \}.$

 P_I : **matching polytope** of G, whose linear inequality description needs exponentially many inequalities.

Open question: Exist a linear or sdp lift of polynomial size?

For
$$G = K_{2n+1}$$
:BCC-rank = n^2 [Aguilera et al. 2004]N-rank $\in [2n, n^2]$ [LS 1991] [Goemans-Tunçel 2001] N_+ -rank = n [Stephen-Tunçel 1999]SA-rank = $2n - 1$ [Mathieu-Sinclair 2009]Lasserre rank $\in [\lfloor \frac{n}{2} \rfloor, n]$ [Yu Hin-Tunçel 2011]

Application to stable sets

■ For t ≥ 2, L_t(FR(G)) is obtained (by projection) from the conditions:

$$y_0 = 1, \ M_t(y) \succeq 0, \ y_{ij} = 0 \ (ij \in E).$$

- STAB(G) is found after $t = \alpha(G)$ iterations.
- This is a natural generalization of the theta body TH(G) obtained (by projection) from the conditions:

$$y_0 = 1, \ M_1(y) \succeq 0, \ y_{ij} = 0 \ (ij \in E).$$

The theta number [Lovász 1979]:

$$\vartheta(G) = \max_{(y_1,\cdots,y_n)\in \mathrm{TH}(G)}\sum_{i\in V} y_i.$$

Why is $\vartheta(G)$ important?

Links structural properties of graphs & geometry of polyhedra.

$$QFR(G) = \left\{ x \in \mathbb{R}^V_+ : \sum_{i \in Q} x_i \le 1 \quad \forall \text{ cliques } Q \subseteq V \right\}$$

 $\operatorname{STAB}(G) \subseteq \operatorname{TH}(G) \subseteq \operatorname{QFR}(G).$

Theorem (Chvátal 75, Grötschel-Lovász-Schrijver 81, CRST 02)

G is **perfect**: *G* does not contain an induced odd circuit on at least five nodes or its complement \iff TH(*G*) = STAB(*G*) \iff TH(*G*) = QFR(*G*).

For G perfect:

- $\alpha(G) = \vartheta(G)$ can be computed in **polynomial time**.
- STAB(G) needs exponentially many linear inequalities.
- STAB(G) has a psd lift of size n + 1.
- STAB(G) has a linear lift of size n^{O(log n)}. [Yannakakis 1991]
- Open: Exist linear lift of polynomial size?

 $\vartheta(G)$ gives useful bounds that can be computed.

- Coding theory: Maximum size of error correcting codes ?
 → Wanted: α(G) for Hamming graphs on {0,1}ⁿ.
 → ϑ(G) is the Delsarte bound.
 - \rightsquigarrow Lasserre relaxation of order 2 give best known bounds.

[Schrijver, Gijswijt, L., etc.]

Geometric packing problems (kissing number, coloring):
 → Work with infinite graphs on the Euclidean space or the unit sphere.

[Bachoc, Vallentin, Oliveira, etc.]

On the dual side: Sums of squares representations

• The inner (point) description of the Lasserre relaxation $L_t(G)$:

$$y_{\emptyset} = 1, \ M_t(y) \succeq 0, \ y_{ij} = 0 \ (ij \in E).$$

• Outer (linear inequality) description?

ideal:
$$I = \langle x_i^2 - x_i \ (i \in V), \ x_i x_j \ (ij \in E) \rangle$$
.

 $\begin{aligned} & \operatorname{STAB}(G) = \operatorname{conv}(V_{\mathbb{R}}(I)) \\ &= \{ x \in \mathbb{R}^n : f(x) \geq 0 \ \text{ for all linear } f \geq 0 \ \text{on } V_{\mathbb{R}}(I) \}. \end{aligned}$

Theorem (Gouveia-Parrilo-Thomas 2011)

1. $L_t(G) = \{x \in \mathbb{R}^n : f(x) \ge 0 \text{ for all linear } f \in \Sigma_{2t} + I\}.$

2. G is perfect \iff Any linear $f \ge 0$ on $V_{\mathbb{R}}(I)$ belongs to $\Sigma_2 + I$.

Application to Max-Cut

Max-Cut: max
$$\sum_{ij\in E} w_{ij}(1-x_ix_j)/2$$
 s.t. $x \in \{\pm 1\}^n$.

Cut polytope: $\operatorname{CUT}_n = \operatorname{conv}(xx^T : x \in \{\pm 1\}^n).$

• The Lasserre relaxation of order 1:

$$L_1 = \{X \in \mathcal{S}^n : X \succeq 0, X_{ii} = 1 (i \in V)\}.$$

- This is the SDP used by [Goemans-Williamson 1995] for their celebrated 0.878-approximation algorithm.
- This is the first (and only) improvement on the easy 0.5-approximation algorithm.
- Best possible under the *unique games conjecture* (if $P \neq NP$).

Higher order relaxations

• *L_t* is defined by the conditions:

 $y_{\emptyset} = 1, \ M_t(y) = (y_{I \Delta J})_{I,J \in \mathcal{P}_t(V)} \succeq 0.$

• L_2 satisfies the triangle inequalities: $x_{ij} + x_{ik} + x_{jk} \ge -1$.

• L_{t+1} satisfies the (2t+1)-point inequalities: [La 2001]

 $\sum_{1 \le i < j \le 2t+1} x_{ij} \ge -t.$

But L_t does not.

[La 2003]

• Hence: the Lasserre rank of $CUT(K_n)$ is at least $\lceil n/2 \rceil$.

Open: Does equality hold? [Yes for $n \le 7$]

Theorem (Fiorini-Massar-Pokutta-de Wolf 2011)

The smallest size of a linear lift of CUT_n is $2^{\Omega(n)}$.

Open: What about PSD lifts?

Another hierarchy: via copositive programming

Theorem (de Klerk-Pasechnik 2002)

$$\alpha(G) = \min \ \lambda \ \text{ s.t. } \lambda(I + A_G) - J \in \mathcal{C}_n.$$

Definition

 C_n : cone of **copositive** matrices M, i.e., $x^T M x \ge 0$ for all $x \ge 0$.

Idea [Parrilo 2000]: Replace C_n by the subcones:

$$\mathcal{K}_n^{(t)} = \left\{ M \in \mathcal{S}_n \mid \left(\sum_{i,j=1}^n M_{ij} x_i^2 x_j^2 \right) \left(\sum_{i=1}^n x_i^2 \right)^t \text{ is SOS} \right\},\,$$

Theorem (Pólya)

If *M* is strictly copositive, then $(x^T M x)(\sum_{i=1}^n x_i)^r$ has non-negative coefficients, and thus $M \in \bigcup_{t>0} \mathcal{K}_n^{(t)}$.

SDP bound: $\vartheta^{(t)}(G) = \min \lambda$ s.t. $\lambda(I + A_G) - J \in \mathcal{K}_n^{(t)}$.

• The Lasserre hierarchy refines the copositive hierarchy:

max over
$$L_{t+1}(G) \leq \vartheta^{(t)}(G)$$
.

• The Lasserre hierarchy converges in $\alpha(G)$ steps.

Conjecture (de Klerk-Pasechnik 2002)

The copositive hierarchy converges in $\alpha(G) - 1$ steps:

$$\left(\alpha(G)\left(\sum_{i} x_i^4 + 2\sum_{ij\in E} x_i^2 x_j^2\right) - (\sum_{i} x_i^2)^2\right)\left(\sum_{i} x_i^2\right)^{\alpha(G)-1} \in \Sigma.$$

Theorem (Gvozdenovic-La 2007)

Yes: For graphs with $\alpha(G) \leq 8$.