
Lift-and-project hierarchies for combinatorial
problems

Monique Laurent
CWI, Amsterdam & Tilburg University

MAP 2012, Konstanz

September 19, 2012



Typical combinatorial optimization problem:

max cT x s.t. Ax ≤ b, x ∈ {0, 1}n

LP relaxation:
P := {x ∈ Rn | Ax ≤ b}

Integral polytope to be found:

PI := conv(P ∩ {0, 1}n)

Goal: Procedure to construct a tighter, tractable relaxation P ′

such that
PI ⊆ P ′ ⊆ P

leading to PI after finitely many iterations.



Cutting planes

Gomory-Chvátal closure of P = {x ∈ Rn : Ax ≤ b}:

P ′ = {x | uTAx ≤ buTbc ∀u ≥ 0 with uTA integer}.

P ′ is a polyhedron.

PI is found after finitely many iterations. [Chvátal 1973]

O(n2 log n) iterations suffice if P ⊆ [0, 1]n.
[Eisenbrand-Schulz 1999]

But optimization over P ′ is hard! [Eisenbrand 1999]



This talk: Lift-and-project methods

We present several techniques to construct a hierarchy of
LP/SDP relaxations:

P ⊇ P1 ⊇ . . . ⊇ Pn = PI .

 Balas-Ceria-Cornuéjols hierarchy [1993] LP

 Lovász-Schrijver N / N+ operators [1991] LP / SDP

 Sherali-Adams hierarchy [1990] LP

 Lasserre hierarchy [2001] SDP

Common feature:
One can optimize in polynomial time over Pt for any fixed t.

Comparison:
SA ⊆ LS ⊆ BCC

Las ⊆ SA ∩ LS+



Great interest recently in such hierarchies:

Polyhedral combinatorics: How many rounds are needed to
find PI ? Which valid inequalities are satisfied after t rounds?
New tractable instances?

Proof systems: Use hierarchies as a model to generate
inequalities and show e.g. PI = ∅.

Complexity theory: What is the integrality gap after t
rounds? Can one use the hierarchy to get improved tractable
approximations? Link to hardness of the problem?

Common background for the hierarchies: Moment theory and
sums of squares of polynomials.



Plan of the lecture

Balas-Ceria-Cornuéjols, Lovśz-Schrijver, Sherali-Adams
constructions.

Full lifting and moment matrices

Lasserre hierarchy

Application to matchings, stable sets, knapsack, max-cut

Copositive hierarchy



Some notation

P = {x ∈ Rn : Ax ≤ b}

Homogenize P to the cone:

P̃ = {(x0, x) ∈ Rn+1 : bx0 − Ax ≥ 0}

= {y ∈ Rn+1 : g`
T y ≥ 0 (` = 1, · · · ,m)}

writing Ax ≤ b as aT` x ≤ b` (` = 1, · · · ,m)

and setting g` =

(
b`
−a`

)
.



Lift-and-project strategy

1. Generate new constraints: Multiply the system Ax ≤ b by
products of the constraints xi ≥ 0 and 1− xi ≥ 0.

 Polynomial system in x .

2. Linearize (and lift) by introducing new variables yI for
products

∏
i∈I xi and setting x2

i = xi .

 Linear system in (x , y).

3. Project back on the x-variable space.

 LP relaxation P ′ satisfying

PI ⊆ P ′ ⊆ P.

The methods vary in the choice of the multipliers and of iterating.



The Balas-Ceria-Cornuéjols construction

1. Multiply the system Ax ≤ b by x1 and 1− x1:

x1(b − Ax) ≥ 0, (1− x1)(b − Ax) ≥ 0

2. Linearize: Set yi = x1xi , identify y1 = x1 and get the lift:

M1 = {(x , y) : y1 = x1, bx1−Ay ≥ 0, b(1−x1)−A(x−y) ≥ 0}
3. Project M1 back to the x-subspace and get P1 such that

PI ⊆ P1 ⊆ P.

4. Iterate: use variable x2 starting from P1 and get P12, etc.

Lemma

P1 = conv(P ∩ {x : x1 = 0, 1}).

Pf: “⊆”: Write x ∈ P1 as x = x1
y
x1

+ (1− x1) x−y
1−x1

.

“⊇”: x ∈ P ∩ {x : x1 = 0, 1} =⇒ (x , x1x) ∈ M1 =⇒ x ∈ P1.

Corollary

Find PI after n steps.



The Lovász-Schrijver construction: N-operator

1. Multiply Ax ≤ b by xi , 1− xi ∀i ∈ [n] and get the system:

(b` − aT` x)xi = gT
`

(
1
x

)(
1
x

)T
ei ≥ 0 ∀`,

(b` − aT` x)(1− xi ) = gT
`

(
1
x

)(
1
x

)T
(e0 − ei ) ≥ 0 ∀`.

2. Linearize: The new matrix variable Y =

(
1
x

)(
1
x

)T
belongs to

M(P) = {Y ∈ Sn+1 | Y0i = Yii , Yei ,Y (e0−ei ) ∈ P̃ ∀i ∈ [n]},

3. Project:

N(P) =

{
x ∈ Rn | ∃Y ∈M(P) s.t.

(
1
x

)
= Ye0

}



The Lovász-Schrijver construction: N+-operator

1. Multiply Ax ≤ b by xi , 1− xi ∀i ∈ [n] and get the system:

(b` − aT` x)xi = gT
`

(
1
x

)(
1
x

)T
ei ≥ 0 ∀`,

(b` − aT` x)(1− xi ) = gT
`

(
1
x

)(
1
x

)T
(e0 − ei ) ≥ 0 ∀`.

2. Linearize: The new matrix variable Y =

(
1
x

)(
1
x

)T
belongs to

M(P) = {Y ∈ Sn+1 | Y0i = Yii , Yei ,Y (e0−ei ) ∈ P̃ ∀i ∈ [n]},

M+(P) =M(P) ∩ S+
n+1.

3. Project:

N+(P) =

{
x ∈ Rn | ∃Y ∈M+(P) s.t.

(
1
x

)
= Ye0

}



Properties of the N- and N+-operators

0. Iterate: Nt(P) = N(Nt−1(P)), Nt
+(P) = N+(Nt−1

+ (P)).

1. PI ⊆ N+(P) ⊆ N(P) ⊆ P.

2. N(P) ⊆
⋂
i∈[n]

conv(P ∩ {x | xi = 0, 1}).

3. Nn(P) = PI .

4. If one can optimize in polynomial time over P, then the same
holds for Nt(P) and for Nt

+(P) for any fixed t.

Example

For the `1-ball centered at e/2:

P =
{

x ∈ RV |
∑

i∈I xi +
∑

i∈V \I (1− xi ) ≥ 1
2 ∀I ⊆ V

}
,

PI = ∅, but 1
2 e ∈ Nn−1

+ (P).

Hence, n iterations of the N+ operator are needed to find PI .



Application to stable sets

P = FR(G ) = {x ∈ RV
+ | xi + xj ≤ 1 (ij ∈ E )}

PI = STAB(G ): stable set polytope of G = (V ,E ).

1. Y ∈M(FR(G )) =⇒ yij = 0 for all edges ij ∈ E .

2. The clique inequality:
∑

i∈Q xi ≤ 1 is valid for N+(FR(G )),

but its N-rank is |Q| − 2.  SDP helps!

3. The odd circuit inequalities:
∑

i∈V (C) xi ≤ |C |−1
2

are valid for N(FR(G )) and they determine it exactly.

4. n
α(G) − 2 ≤ N-rank ≤ n − α(G )− 1.

5. N+-rank ≤ α(G ) [tight for G = line graph of K2p+1]



The Sherali-Adams construction

1. New polynomial constraints:

• x I (1− x)W \I (b − Ax) ≥ 0 for I ⊆W with |W | = t.

• x I (1− x)U\I ≥ 0 for I ⊆ U with |U| = t + 1.

2. Linearize & lift: Introduce new variables yU for all
U ∈ Pt+1(V ), setting yi = xi (x2

i = xi ).

3. Project back on x-variables space and get SAt(P).

Lemma

SA1(P) = N(P).

SAt(P) ⊆ Nt(P).



Full lifting

x ∈ {0, 1}n  y x =

(∏
i∈I

xi

)
I⊆V

∈ {0, 1}P(V )

y x = (1, x1, .., xn, x1x2, .., xn−1xn, ..,
∏
i∈V

xi )

 Y = y x(y x)T =

∏
i∈I

xi
∏
j∈J

xj


I ,J⊆V

If x ∈ P ∩ {0, 1}n then Y = y x(y x)T satisfies:

1. Y (∅, ∅) = 1.

2. Y (I , J) depends only on I ∪ J  moment matrix

3. Y � 0.

4. g`(x)Y � 0  localizing moment matrix

These conditions characterize conv(y x : x ∈ P ∩ {0, 1}n), thus PI .



Full lifting via moment matrices

Definition

Given y ∈ RP(V ) define:

1. The moment matrix MV (y) = (yI∪J)I ,J∈P(V ).

2. The shifted vector g ∗ y = (yI +
∑

i giyI∪{i})I∈P(V ).

[linearize g(x)y x = (g(x)x I )I ]

3. The localizing moment matrix MV (g ∗ y).

Theorem

1. conv(y x(y x)T : x ∈ P ∩ {0, 1}) is equal to

∆P = {y ∈ RP(V ) : y∅ = 1, MV (y) � 0, MV (g` ∗y) � 0 ∀`}.

2. PI is the projection of ∆P .

3. ∆P is a polytope.



Proof

Definition

Let Z be the matrix with columns y x for x ∈ {0, 1}n.

Recall:

∆P = {y ∈ RP(V ) : y∅ = 1, MV (y) � 0, MV (g` ∗ y) � 0 ∀`}.

Lemma

∆P = {y ∈ RP(V ) : y∅ = 1, Z−1y ≥ 0, (Z−1y)J = 0 if χJ 6∈ P}

= conv(y x : x ∈ P ∩ {0, 1}n).

Proof:

1. Z diagonalizes MV (y): MV (y) = Z diag(Z−1y) ZT .

Thus: MV (y) � 0 ⇐⇒ Z−1y ≥ 0.

2. MV (g` ∗ y) � 0 ⇐⇒ (Z−1y)J g`(χ
J) ≥ 0 for all J.



Case n = 2

Z is the 0/1 matrix indexed by P(V ) with

Z (I , J) = 1, Z−1(I , J) = (−1)|J\I | if I ⊆ J, 0 otherwise.

Z =


∅ 1 2 12

∅ 1 1 1 1
1 0 1 0 1
2 0 0 1 1
12 0 0 0 1

  Z−1 =


∅ 1 2 12

∅ 1 −1 −1 1
1 0 1 0 −1
2 0 0 1 −1
12 0 0 0 1



MV (y) =


y0 y1 y2 y12

y1 y1 y12 y12

y2 y12 y2 y12

y12 y12 y12 y12

 � 0⇐⇒


y∅ − y1 − y2 + y12 ≥ 0

y1 − y12 ≥ 0
y2 − y12 ≥ 0

y12 ≥ 0



Example

MV (y) =


y∅ y1 y2 y12

y1 y1 y12 y12

y2 y12 y2 y12

y12 y12 y12 y12

 � 0⇐⇒


y∅ − y1 − y2 + y12 ≥ 0

y1 − y12 ≥ 0
y2 − y12 ≥ 0

y12 ≥ 0

Consider

P =

{
(x1, x2) : g(x) =

3

2
− x1 − x2 ≥ 0

}
.

(g ∗ y)∅ =
3

2
y∅ − y1 − y2, (g ∗ y)1 =

3

2
y1 − y1 − y12 =

1

2
y1 − y12,

(g ∗ y)2 =
1

2
y2 − y12, (g ∗ y)12 =

3

2
y12 − y12 − y12 = −1

2
y12.

(g ∗ y)∅ − (g ∗ y)1 − (g ∗ y)2 + (g ∗ y)12 =
3

2
(y∅ − y1 − y2).

MV (y),MV (g ∗y) � 0 ⇐⇒ y12 = 0, y1, y2 ≥ 0, y∅ − y1 − y2 ≥ 0.



Recipe for SDP hierarchies

Get SDP hierarchies by truncating MV (y) and MV (g` ∗ y):

• Consider MU(y) = (yI∪J)I ,J⊆U , indexed by P(U) for U ⊆ V ,

• or Mt(y) = (yI∪J)|I |,|J|≤t , indexed by Pt(V ) for some t ≤ n.

1. (local) Sherali-Adams relaxation SAt(P):

MU(y) � 0, MW (g` ∗ y) � 0 ∀U ∈ Pt+1(V ), W ∈ Pt(V ).

 LP with variables yI for all I ∈ Pt+1(V )

2. (global) Lasserre relaxation Lt(P):

Mt(y) � 0, Mt−1(g` ∗ y) � 0.

 SDP with variables yI for all I ∈ P2t(V )

Clearly:
Lt(P) ⊆ SAt−1(P).



Comparison

The Lasserre hierarchy refines all other hierarchies:

Lt(P) ⊆ Nt−1
+ (P) ∩ SAt−1(P).

Lt(P) is tighter, but more expensive to compute:

• SDP for Lt(P) involves one matrix of size O(nt).

• SDP for Nt−1
+ (P) involves O(nt−2) matrices of size n + 1.

The N, N+ operators apply to P convex.

SA and Lasserre apply to P basic closed semi-algebraic.



Application to the knapsack problem

Given a, b, c ≥ 0 :

OPT = max cT x s.t. aT x ≤ b, x ∈ {0, 1}n

LP = max cT x s.t. aT x ≤ b, x ∈ [0, 1]n.

LP

OPT
≤ 2.

Theorem (Karlin-Mathieu-Thach Nguyen 2011)

1. For the Sherali-Adams relaxation: max over SAt
OPT ≥ 2

1+t/n .

2. For the Lasserre relaxation: max over Lt
OPT ≤ 1 + 1

t−1 .

The Lasserre hierarchy is more powerful than Sherali-Adams.



Application to the matching polytope

G = (V ,E ).

P = {x ∈ RE
+ | x(δ(v)) ≤ 1 ∀v ∈ V }.

PI : matching polytope of G , whose linear inequality description
needs exponentially many inequalities.

Open question: Exist a linear or sdp lift of polynomial size?

For G = K2n+1:

BCC-rank = n2 [Aguilera et al. 2004]

N-rank ∈ [2n, n2] [LS 1991] [Goemans-Tunçel 2001]

N+-rank = n [Stephen-Tunçel 1999]

SA-rank = 2n − 1 [Mathieu-Sinclair 2009]

Lasserre rank ∈
[⌊

n
2

⌋
, n
]

[Yu Hin-Tunçel 2011]



Application to stable sets

For t ≥ 2, Lt(FR(G )) is obtained (by projection) from the
conditions:

y0 = 1, Mt(y) � 0, yij = 0 (ij ∈ E ).

STAB(G ) is found after t = α(G ) iterations.

This is a natural generalization of the theta body TH(G )
obtained (by projection) from the conditions:

y0 = 1, M1(y) � 0, yij = 0 (ij ∈ E ).

The theta number [Lovász 1979]:

ϑ(G ) = max
(y1,··· ,yn)∈TH(G)

∑
i∈V

yi .



Why is ϑ(G ) important?

Links structural properties of graphs & geometry of polyhedra.

QFR(G ) =
{

x ∈ RV
+ :
∑

i∈Q xi ≤ 1 ∀ cliques Q ⊆ V
}
.

STAB(G ) ⊆ TH(G ) ⊆ QFR(G ).

Theorem (Chvátal 75, Grötschel-Lovász-Schrijver 81, CRST 02)

G is perfect: G does not contain an induced odd circuit on at
least five nodes or its complement ⇐⇒ TH(G ) = STAB(G )

⇐⇒ TH(G ) = QFR(G ).

For G perfect:

α(G ) = ϑ(G ) can be computed in polynomial time.
STAB(G ) needs exponentially many linear inequalities.
STAB(G ) has a psd lift of size n + 1.
STAB(G ) has a linear lift of size nO(log n). [Yannakakis 1991]
Open: Exist linear lift of polynomial size?



Why is ϑ(G ) useful ?

ϑ(G ) gives useful bounds that can be computed.

Coding theory: Maximum size of error correcting codes ?

 Wanted: α(G ) for Hamming graphs on {0, 1}n.

 ϑ(G ) is the Delsarte bound.

 Lasserre relaxation of order 2 give best known bounds.

[Schrijver, Gijswijt, L., etc.]

Geometric packing problems (kissing number, coloring):

 Work with infinite graphs on the Euclidean space or the
unit sphere.

[Bachoc, Vallentin, Oliveira, etc.]



On the dual side: Sums of squares representations

• The inner (point) description of the Lasserre relaxation Lt(G ):

y∅ = 1, Mt(y) � 0, yij = 0 (ij ∈ E ).

• Outer (linear inequality) description?

ideal: I = 〈x2
i − xi (i ∈ V ), xixj (ij ∈ E )〉.

STAB(G ) = conv(VR(I ))

= {x ∈ Rn : f (x) ≥ 0 for all linear f ≥ 0 on VR(I )}.

Theorem (Gouveia-Parrilo-Thomas 2011)

1. Lt(G ) = {x ∈ Rn : f (x) ≥ 0 for all linear f ∈ Σ2t + I}.
2. G is perfect ⇐⇒ Any linear f ≥ 0 on VR(I ) belongs to Σ2 + I .



Application to Max-Cut

Max-Cut: max
∑
ij∈E

wij(1− xixj)/2 s.t. x ∈ {±1}n.

Cut polytope: CUTn = conv(xxT : x ∈ {±1}n).

The Lasserre relaxation of order 1:

L1 = {X ∈ Sn : X � 0, Xii = 1 (i ∈ V )}.

This is the SDP used by [Goemans-Williamson 1995] for their
celebrated 0.878-approximation algorithm.

This is the first (and only) improvement on the easy
0.5-approximation algorithm.

Best possible under the unique games conjecture (if P 6=NP).



Higher order relaxations

Lt is defined by the conditions:

y∅ = 1, Mt(y) = (yI∆J)I ,J∈Pt(V ) � 0.

L2 satisfies the triangle inequalities: xij + xik + xjk ≥ −1.

Lt+1 satisfies the (2t + 1)-point inequalities: [La 2001]∑
1≤i<j≤2t+1

xij ≥ −t.

But Lt does not. [La 2003]

Hence: the Lasserre rank of CUT(Kn) is at least dn/2e.

Open: Does equality hold? [Yes for n ≤ 7]

Theorem (Fiorini-Massar-Pokutta-de Wolf 2011)

The smallest size of a linear lift of CUTn is 2Ω(n).

Open: What about PSD lifts?



Another hierarchy: via copositive programming

Theorem (de Klerk-Pasechnik 2002)

α(G ) = min λ s.t. λ(I + AG )− J ∈ Cn.

Definition

Cn: cone of copositive matrices M, i.e., xTMx ≥ 0 for all x ≥ 0.

Idea [Parrilo 2000]: Replace Cn by the subcones:

K(t)
n =

M ∈ Sn |
( n∑

i ,j=1

Mijx
2
i x2

j

)( n∑
i=1

x2
i

)t
is SOS

 ,

Theorem (Pólya)

If M is strictly copositive, then (xTMx)(
∑n

i=1 xi )
r has

non-negative coefficients, and thus M ∈
⋃

t≥0K
(t)
n .



SDP bound: ϑ(t)(G ) = min λ s.t. λ(I + AG )− J ∈ K(t)
n .

The Lasserre hierarchy refines the copositive hierarchy:

max over Lt+1(G ) ≤ ϑ(t)(G ).

The Lasserre hierarchy converges in α(G ) steps.

Conjecture (de Klerk-Pasechnik 2002)

The copositive hierarchy converges in α(G )− 1 steps:α(G )

∑
i

x4
i + 2

∑
ij∈E

x2
i x2

j

− (
∑
i

x2
i )2

(∑
i

x2
i

)α(G)−1

∈ Σ.

Theorem (Gvozdenovic-La 2007)

Yes: For graphs with α(G ) ≤ 8.


