Lift-and-project hierarchies for combinatorial problems

Monique Laurent
CWI, Amsterdam \& Tilburg University

MAP 2012, Konstanz

September 19, 2012

Typical combinatorial optimization problem:

$$
\max c^{T} x \text { s.t. } A x \leq b, x \in\{0,1\}^{n}
$$

LP relaxation:

$$
P:=\left\{x \in \mathbb{R}^{n} \mid A x \leq b\right\}
$$

Integral polytope to be found:

$$
P_{l}:=\operatorname{conv}\left(P \cap\{0,1\}^{n}\right)
$$

Goal: Procedure to construct a tighter, tractable relaxation P^{\prime} such that

$$
P_{1} \subseteq P^{\prime} \subseteq P
$$

leading to P_{l} after finitely many iterations.

Gomory-Chvátal closure of $P=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$:

$$
P^{\prime}=\left\{x \mid u^{T} A x \leq\left\lfloor u^{T} b\right\rfloor \quad \forall u \geq 0 \text { with } u^{T} A \text { integer }\right\} .
$$

- P^{\prime} is a polyhedron.
- P_{l} is found after finitely many iterations.
[Chvátal 1973]
- $O\left(n^{2} \log n\right)$ iterations suffice if $P \subseteq[0,1]^{n}$.
[Eisenbrand-Schulz 1999]
- But optimization over P^{\prime} is hard!
[Eisenbrand 1999]

We present several techniques to construct a hierarchy of LP/SDP relaxations:

$$
P \supseteq P_{1} \supseteq \ldots \supseteq P_{n}=P_{l} .
$$

\rightsquigarrow Balas-Ceria-Cornuéjols hierarchy [1993]
\rightsquigarrow Lovász-Schrijver N / N_{+}operators [1991]
\rightsquigarrow Sherali-Adams hierarchy [1990]
\rightsquigarrow Lasserre hierarchy [2001]
Common feature: One can optimize in polynomial time over P_{t} for any fixed t.

Comparison:

$$
\begin{aligned}
& \mathrm{SA} \subseteq \mathrm{LS} \subseteq \mathrm{BCC} \\
& \mathrm{Las} \subseteq \mathrm{SA} \cap \mathrm{LS}_{+}
\end{aligned}
$$

Great interest recently in such hierarchies:
■ Polyhedral combinatorics: How many rounds are needed to find P_{l} ? Which valid inequalities are satisfied after t rounds? New tractable instances?

■ Proof systems: Use hierarchies as a model to generate inequalities and show e.g. $P_{I}=\emptyset$.

■ Complexity theory: What is the integrality gap after t rounds? Can one use the hierarchy to get improved tractable approximations? Link to hardness of the problem?

Common background for the hierarchies: Moment theory and sums of squares of polynomials.

- Balas-Ceria-Cornuéjols, Lovśz-Schrijver, Sherali-Adams constructions.

■ Full lifting and moment matrices
■ Lasserre hierarchy

■ Application to matchings, stable sets, knapsack, max-cut

■ Copositive hierarchy

$$
P=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}
$$

Homogenize P to the cone:

$$
\begin{aligned}
& \tilde{P}=\left\{\left(x_{0}, x\right) \in \mathbb{R}^{n+1}: b x_{0}-A x \geq 0\right\} \\
= & \left\{y \in \mathbb{R}^{n+1}: g_{\ell}{ }^{T} y \geq 0 \quad(\ell=1, \cdots, m)\right\}
\end{aligned}
$$

writing $A x \leq b \quad$ as $\quad a_{\ell}^{T} x \leq b_{\ell} \quad(\ell=1, \cdots, m)$
and setting $g_{\ell}=\binom{b_{\ell}}{-a_{\ell}}$.

1. Generate new constraints: Multiply the system $A x \leq b$ by products of the constraints $x_{i} \geq 0$ and $1-x_{i} \geq 0$.
\rightsquigarrow Polynomial system in x.
2. Linearize (and lift) by introducing new variables y_{l} for products $\prod_{i \in I} x_{i}$ and setting $x_{i}^{2}=x_{i}$.
\rightsquigarrow Linear system in (x, y).
3. Project back on the x-variable space.
\rightsquigarrow LP relaxation P^{\prime} satisfying

$$
P_{I} \subseteq P^{\prime} \subseteq P
$$

The methods vary in the choice of the multipliers and of iterating.

1. Multiply the system $A x \leq b$ by x_{1} and $1-x_{1}$:

$$
x_{1}(b-A x) \geq 0,\left(1-x_{1}\right)(b-A x) \geq 0
$$

2. Linearize: Set $y_{i}=x_{1} x_{i}$, identify $y_{1}=x_{1}$ and get the lift:

$$
M_{1}=\left\{(x, y): y_{1}=x_{1}, b x_{1}-A y \geq 0, b\left(1-x_{1}\right)-A(x-y) \geq 0\right\}
$$

3. Project M_{1} back to the x-subspace and get P_{1} such that

$$
P_{I} \subseteq P_{1} \subseteq P
$$

4. Iterate: use variable x_{2} starting from P_{1} and get P_{12}, etc.

Lemma

$P_{1}=\operatorname{conv}\left(P \cap\left\{x: x_{1}=0,1\right\}\right)$.
Pf: " \subseteq ": Write $x \in P_{1}$ as $x=x_{1} \frac{y}{x_{1}}+\left(1-x_{1}\right) \frac{x-y}{1-x_{1}}$.

$$
" \supseteq ": x \in P \cap\left\{x: x_{1}=0,1\right\} \Longrightarrow\left(x, x_{1} x\right) \in M_{1} \Longrightarrow x \in P_{1} .
$$

Corollary

Find P_{l} after n steps.

1. Multiply $A x \leq b$ by $x_{i}, 1-x_{i} \forall i \in[n]$ and get the system:

$$
\begin{gathered}
\left(b_{\ell}-a_{\ell}^{T} x\right) x_{i}=g_{\ell}^{T}\binom{1}{x}\binom{1}{x}^{T} e_{i} \geq 0 \quad \forall \ell \\
\left(b_{\ell}-a_{\ell}^{T} x\right)\left(1-x_{i}\right)=g_{\ell}^{T}\binom{1}{x}\binom{1}{x}^{T}\left(e_{0}-e_{i}\right) \geq 0 \quad \forall \ell
\end{gathered}
$$

2. Linearize: The new matrix variable $Y=\binom{1}{x}\binom{1}{x}^{T}$ belongs to

$$
\mathcal{M}(P)=\left\{Y \in \mathcal{S}_{n+1} \mid Y_{0 i}=Y_{i i}, Y e_{i}, Y\left(e_{0}-e_{i}\right) \in \tilde{P} \forall i \in[n]\right\}
$$

3. Project:

$$
N(P)=\left\{x \in \mathbb{R}^{n} \mid \exists Y \in \mathcal{M}(P) \text { s.t. }\binom{1}{x}=Y e_{0}\right\}
$$

1. Multiply $A x \leq b$ by $x_{i}, 1-x_{i} \forall i \in[n]$ and get the system:

$$
\begin{gathered}
\left(b_{\ell}-a_{\ell}^{T} x\right) x_{i}=g_{\ell}^{T}\binom{1}{x}\binom{1}{x}^{T} e_{i} \geq 0 \quad \forall \ell \\
\left(b_{\ell}-a_{\ell}^{T} x\right)\left(1-x_{i}\right)=g_{\ell}^{T}\binom{1}{x}\binom{1}{x}^{T}\left(e_{0}-e_{i}\right) \geq 0 \quad \forall \ell .
\end{gathered}
$$

2. Linearize: The new matrix variable $Y=\binom{1}{x}\binom{1}{x}^{T}$ belongs to

$$
\begin{gathered}
\mathcal{M}(P)=\left\{Y \in \mathcal{S}_{n+1} \mid Y_{0 i}=Y_{i i}, Y e_{i}, Y\left(e_{0}-e_{i}\right) \in \tilde{P} \forall i \in[n]\right\}, \\
\mathcal{M}_{+}(P)=\mathcal{M}(P) \cap \mathcal{S}_{n+1}^{+}
\end{gathered}
$$

3. Project:

$$
N_{+}(P)=\left\{x \in \mathbb{R}^{n} \mid \exists Y \in \mathcal{M}_{+}(P) \text { s.t. }\binom{1}{x}=Y e_{0}\right\}
$$

0. Iterate: $N^{t}(P)=N\left(N^{t-1}(P)\right), N_{+}^{t}(P)=N_{+}\left(N_{+}^{t-1}(P)\right)$.
1. $P_{I} \subseteq N_{+}(P) \subseteq N(P) \subseteq P$.
2. $N(P) \subseteq \bigcap_{i \in[n]} \operatorname{conv}\left(P \cap\left\{x \mid x_{i}=0,1\right\}\right)$.
3. $N^{n}(P)=P_{1}$.
4. If one can optimize in polynomial time over P, then the same holds for $N^{t}(P)$ and for $N_{+}^{t}(P)$ for any fixed t.

Example

For the ℓ_{1}-ball centered at e/2:

$$
\begin{aligned}
& P=\left\{x \in \mathbb{R}^{V} \left\lvert\, \sum_{i \in I} x_{i}+\sum_{i \in V \backslash I}\left(1-x_{i}\right) \geq \frac{1}{2} \quad \forall I \subseteq V\right.\right\}, \\
& P_{I}=\emptyset, \text { but } \frac{1}{2} e \in N_{+}^{n-1}(P) .
\end{aligned}
$$

Hence, \mathbf{n} iterations of the N_{+}operator are needed to find P_{l}.
$P=\operatorname{FR}(G)=\left\{x \in \mathbb{R}_{+}^{V} \mid x_{i}+x_{j} \leq 1(i j \in E)\right\}$
$P_{I}=\operatorname{STAB}(G)$: stable set polytope of $G=(V, E)$.

1. $Y \in \mathcal{M}(\operatorname{FR}(G)) \Longrightarrow y_{i j}=0$ for all edges $i j \in E$.
2. The clique inequality: $\sum_{i \in Q} x_{i} \leq 1$ is valid for $N_{+}(\operatorname{FR}(G))$, but its N-rank is $|Q|-2$. \rightsquigarrow SDP helps!
3. The odd circuit inequalities: $\sum_{i \in V(C)} x_{i} \leq \frac{|C|-1}{2}$ are valid for $N(\operatorname{FR}(G))$ and they determine it exactly.
4. $\frac{n}{\alpha(G)}-2 \leq N$-rank $\leq n-\alpha(G)-1$.
5. N_{+}-rank $\leq \alpha(G)$
[tight for $G=$ line graph of $K_{2 p+1}$]
6. New polynomial constraints:

- $x^{\prime}(1-x)^{W \backslash I}(b-A x) \geq 0 \quad$ for $I \subseteq W$ with $|W|=t$.
- $x^{\prime}(1-x)^{U \backslash I} \geq 0 \quad$ for $I \subseteq U$ with $|U|=t+1$.

2. Linearize \& lift: Introduce new variables y_{U} for all $U \in \mathcal{P}_{t+1}(V)$, setting $y_{i}=x_{i} \quad\left(x_{i}^{2}=x_{i}\right)$.
3. Project back on x-variables space and get $\mathrm{SA}_{t}(P)$.

Lemma

- $\mathrm{SA}_{1}(P)=N(P)$.
- $\mathrm{SA}_{t}(P) \subseteq N^{t}(P)$.

$$
\begin{aligned}
x \in\{0,1\}^{n} \rightsquigarrow y^{x} & =\left(\prod_{i \in I} x_{i}\right)_{I \subseteq V} \in\{0,1\}^{\mathcal{P}(V)} \\
y^{x} & =\left(1, x_{1}, . ., x_{n}, x_{1} x_{2}, . ., x_{n-1} x_{n}, . ., \prod_{i \in V} x_{i}\right) \\
\rightsquigarrow Y & =y^{x}\left(y^{x}\right)^{T}=\left(\prod_{i \in I} x_{i} \prod_{j \in J} x_{j}\right)_{I, J \subseteq V}
\end{aligned}
$$

$$
\text { If } x \in P \cap\{0,1\}^{n} \text { then } Y=y^{x}\left(y^{x}\right)^{T} \text { satisfies: }
$$

1. $Y(\emptyset, \emptyset)=1$.
2. $Y(I, J)$ depends only on $I \cup J$
\rightsquigarrow moment matrix
3. $Y \succeq 0$.
4. $g_{\ell}(x) Y \succeq 0$
\rightsquigarrow localizing moment matrix
These conditions characterize $\operatorname{conv}\left(y^{x}: x \in P \cap\{0,1\}^{n}\right)$, thus P_{I}.

Definition

Given $y \in \mathbb{R}^{\mathcal{P}(V)}$ define:

1. The moment matrix $M_{V}(y)=\left(y_{I \cup J}\right)_{I, J \in \mathcal{P}(V)}$.
2. The shifted vector $g * y=\left(y_{I}+\sum_{i} g_{i} y_{I \cup\{i\}}\right)_{I \in \mathcal{P}(V)}$.
[linearize $\left.g(x) y^{x}=\left(g(x) x^{\prime}\right)_{I}\right]$
3. The localizing moment matrix $M_{V}(g * y)$.

Theorem

1. $\operatorname{conv}\left(y^{x}\left(y^{x}\right)^{T}: x \in P \cap\{0,1\}\right)$ is equal to

$$
\Delta_{P}=\left\{y \in \mathbb{R}^{\mathcal{P}(V)}: y_{\emptyset}=1, M_{V}(y) \succeq 0, M_{V}\left(g_{\ell} * y\right) \succeq 0 \quad \forall \ell\right\}
$$

2. P_{I} is the projection of Δ_{P}.
3. Δ_{P} is a polytope.

Definition

Let Z be the matrix with columns y^{x} for $x \in\{0,1\}^{n}$.
Recall:

$$
\Delta_{P}=\left\{y \in \mathbb{R}^{\mathcal{P}(V)}: y_{\emptyset}=1, M_{V}(y) \succeq 0, M_{V}\left(g_{\ell} * y\right) \succeq 0 \forall \ell\right\}
$$

Lemma

$$
\begin{aligned}
\Delta_{P} & =\left\{y \in \mathbb{R}^{\mathcal{P}(V)}: y_{\emptyset}=1, Z^{-1} y \geq 0,\left(Z^{-1} y\right)_{J}=0 \text { if } \chi^{J} \notin P\right\} \\
& =\operatorname{conv}\left(y^{x}: x \in P \cap\{0,1\}^{n}\right) .
\end{aligned}
$$

Proof:

1. Z diagonalizes $M_{V}(y): \quad M_{V}(y)=Z \operatorname{diag}\left(Z^{-1} y\right) Z^{T}$.

Thus: $M_{V}(y) \succeq 0 \Longleftrightarrow Z^{-1} y \geq 0$.
2. $\left.M_{V}\left(g_{\ell} * y\right) \succeq 0 \Longleftrightarrow\left(Z^{-1} y\right)\right\lrcorner g_{\ell}\left(\chi^{J}\right) \geq 0$ for all J.
Z is the $0 / 1$ matrix indexed by $\mathcal{P}(V)$ with

$$
Z(I, J)=1, \quad Z^{-1}(I, J)=(-1)^{|J \backslash| \mid} \quad \text { if } I \subseteq J, \quad 0 \text { otherwise. }
$$

$$
\left.Z=\begin{array}{l}
\emptyset \\
\emptyset \\
1 \\
2 \\
12
\end{array}\left(\begin{array}{cccc}
\emptyset & 1 & 2 & 12 \\
1 & 1 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1
\end{array}\right) \quad \rightsquigarrow \quad Z^{-1}=\begin{array}{c}
\\
\emptyset \\
1 \\
2 \\
12
\end{array} \begin{array}{cccc}
\emptyset & 1 & 2 & 12 \\
1 & -1 & -1 & 1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & -1 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

$$
M_{V}(y)=\left(\begin{array}{cccc}
y_{0} & y_{1} & y_{2} & y_{12} \\
y_{1} & y_{1} & y_{12} & y_{12} \\
y_{2} & y_{12} & y_{2} & y_{12} \\
y_{12} & y_{12} & y_{12} & y_{12}
\end{array}\right) \succeq 0 \Longleftrightarrow\left\{\begin{array}{r}
y_{\emptyset}-y_{1}-y_{2}+y_{12} \geq 0 \\
y_{1}-y_{12} \geq 0 \\
y_{2}-y_{12} \geq 0 \\
y_{12} \geq 0
\end{array}\right.
$$

$$
M_{V}(y)=\left(\begin{array}{cccc}
y_{\emptyset} & y_{1} & y_{2} & y_{12} \\
y_{1} & y_{1} & y_{12} & y_{12} \\
y_{2} & y_{12} & y_{2} & y_{12} \\
y_{12} & y_{12} & y_{12} & y_{12}
\end{array}\right) \succeq 0 \Longleftrightarrow\left\{\begin{array}{r}
y_{\emptyset}-y_{1}-y_{2}+y_{12} \geq 0 \\
y_{1}-y_{12} \geq 0 \\
y_{2}-y_{12} \geq 0 \\
y_{12} \geq 0
\end{array}\right.
$$

Consider

$$
\begin{gathered}
P=\left\{\left(x_{1}, x_{2}\right): g(x)=\frac{3}{2}-x_{1}-x_{2} \geq 0\right\} . \\
(g * y)_{\emptyset}=\frac{3}{2} y_{\emptyset}-y_{1}-y_{2},(g * y)_{1}=\frac{3}{2} y_{1}-y_{1}-y_{12}=\frac{1}{2} y_{1}-y_{12} \\
(g * y)_{2}=\frac{1}{2} y_{2}-y_{12},(g * y)_{12}=\frac{3}{2} y_{12}-y_{12}-y_{12}=-\frac{1}{2} y_{12} . \\
(g * y)_{\emptyset}-(g * y)_{1}-(g * y)_{2}+(g * y)_{12}=\frac{3}{2}\left(y_{\emptyset}-y_{1}-y_{2}\right) .
\end{gathered}
$$

$$
M_{V}(y), M_{V}(g * y) \succeq 0 \Longleftrightarrow y_{12}=0, y_{1}, y_{2} \geq 0, y_{\emptyset}-y_{1}-y_{2} \geq 0
$$

Get SDP hierarchies by truncating $M_{V}(y)$ and $M_{V}\left(g_{\ell} * y\right)$:

- Consider $M_{U}(y)=\left(y_{I} \cup J\right)_{I, J \subseteq U}$, indexed by $\mathcal{P}(U)$ for $U \subseteq V$,
- or $M_{t}(y)=\left(y_{I \cup J}\right)_{|I|,|J| \leq t}$, indexed by $\mathcal{P}_{t}(V)$ for some $t \leq n$.

1. (local) Sherali-Adams relaxation $\mathrm{SA}_{t}(P)$:

$$
\begin{aligned}
& M_{U}(y) \succeq 0, M_{W}\left(g_{\ell} * y\right) \succeq 0 \quad \forall U \in \mathcal{P}_{t+1}(V), \quad W \in \mathcal{P}_{t}(V) . \\
& \rightsquigarrow L P \text { with variables } y_{I} \text { for all } I \in \mathcal{P}_{t+1}(V)
\end{aligned}
$$

2. (global) Lasserre relaxation $\mathrm{L}_{t}(P)$:

$$
M_{t}(y) \succeq 0, \quad M_{t-1}\left(g_{\ell} * y\right) \succeq 0
$$

\rightsquigarrow SDP with variables y, for all $I \in \mathcal{P}_{2 t}(V)$
Clearly:

$$
\mathrm{L}_{t}(P) \subseteq \mathrm{SA}_{t-1}(P)
$$

■ The Lasserre hierarchy refines all other hierarchies:

$$
\mathrm{L}_{t}(P) \subseteq N_{+}^{t-1}(P) \cap \mathrm{SA}_{t-1}(P)
$$

■ $\mathrm{L}_{t}(P)$ is tighter, but more expensive to compute:

- SDP for $\mathrm{L}_{t}(P)$ involves one matrix of size $O\left(n^{t}\right)$.
- SDP for $N_{+}^{t-1}(P)$ involves $O\left(n^{t-2}\right)$ matrices of size $n+1$.
- The N, N_{+}operators apply to P convex.

SA and Lasserre apply to P basic closed semi-algebraic.

Given $a, b, c \geq 0$:

$$
\begin{aligned}
& \mathrm{OPT}=\max c^{T} x \text { s.t. } a^{T} x \leq b, x \in\{0,1\}^{n} \\
& \begin{array}{c}
\mathrm{LP}=\max c^{T} x \text { s.t. } a^{T} x \leq b, x \in[0,1]^{n} \\
\frac{\mathrm{LP}}{\mathrm{OPT}} \leq 2
\end{array}
\end{aligned}
$$

Theorem (Karlin-Mathieu-Thach Nguyen 2011)

1. For the Sherali-Adams relaxation: $\frac{\text { max over } S A_{t}}{O P T} \geq \frac{2}{1+t / n}$.
2. For the Lasserre relaxation: $\frac{\max \text { over } L_{t}}{O P T} \leq 1+\frac{1}{t-1}$.

The Lasserre hierarchy is more powerful than Sherali-Adams.
$G=(V, E)$.
$P=\left\{x \in \mathbb{R}_{+}^{E} \mid x(\delta(v)) \leq 1 \forall v \in V\right\}$.
P_{l} : matching polytope of G, whose linear inequality description needs exponentially many inequalities.

Open question: Exist a linear or sdp lift of polynomial size?
For $G=K_{2 n+1}$:

- BCC-rank $=n^{2}$
[Aguilera et al. 2004]
- N-rank $\in\left[2 n, n^{2}\right]$
- N_{+}-rank $=n$
- SA-rank $=2 n-1$
- Lasserre rank $\in\left[\left\lfloor\frac{n}{2}\right\rfloor, n\right]$
[LS 1991] [Goemans-Tunçel 2001]
[Stephen-Tunçel 1999]
[Mathieu-Sinclair 2009]
[Yu Hin-Tunçel 2011]
- For $t \geq 2, L_{t}(\operatorname{FR}(G))$ is obtained (by projection) from the conditions:

$$
y_{0}=1, M_{t}(y) \succeq 0, y_{i j}=0(i j \in E)
$$

■ $\operatorname{STAB}(G)$ is found after $t=\alpha(G)$ iterations.

- This is a natural generalization of the theta body $\mathrm{TH}(G)$ obtained (by projection) from the conditions:

$$
y_{0}=1, M_{1}(y) \succeq 0, y_{i j}=0(i j \in E)
$$

■ The theta number [Lovász 1979]:

$$
\vartheta(G)=\max _{\left(y_{1}, \cdots, y_{n}\right) \in \mathrm{TH}(G)} \sum_{i \in V} y_{i} .
$$

Why is $\vartheta(G)$ important?

Links structural properties of graphs \& geometry of polyhedra.
$\operatorname{QFR}(G)=\left\{x \in \mathbb{R}_{+}^{V}: \sum_{i \in Q} x_{i} \leq 1 \quad \forall\right.$ cliques $\left.Q \subseteq V\right\}$.

$$
\operatorname{STAB}(G) \subseteq \operatorname{TH}(G) \subseteq \operatorname{QFR}(G)
$$

Theorem (Chvátal 75, Grötschel-Lovász-Schrijver 81, CRST 02)

G is perfect: G does not contain an induced odd circuit on at least five nodes or its complement $\Longleftrightarrow \mathrm{TH}(G)=\operatorname{STAB}(G)$
$\Longleftrightarrow \mathrm{TH}(G)=\operatorname{QFR}(G)$.
For G perfect:

- $\alpha(G)=\vartheta(G)$ can be computed in polynomial time.
- $\operatorname{STAB}(G)$ needs exponentially many linear inequalities.
- $\operatorname{STAB}(G)$ has a psd lift of size $n+1$.
$\square \operatorname{STAB}(G)$ has a linear lift of size $n^{O(\log n)}$. [Yannakakis 1991]
■ Open: Exist linear lift of polynomial size?
$\vartheta(G)$ gives useful bounds that can be computed.
- Coding theory: Maximum size of error correcting codes ? \rightsquigarrow Wanted: $\alpha(G)$ for Hamming graphs on $\{0,1\}^{n}$.
$\rightsquigarrow \vartheta(G)$ is the Delsarte bound.
\rightsquigarrow Lasserre relaxation of order 2 give best known bounds.
[Schrijver, Gijswijt, L., etc.]

■ Geometric packing problems (kissing number, coloring): \rightsquigarrow Work with infinite graphs on the Euclidean space or the unit sphere.
[Bachoc, Vallentin, Oliveira, etc.]

- The inner (point) description of the Lasserre relaxation $L_{t}(G)$:

$$
y_{\emptyset}=1, M_{t}(y) \succeq 0, y_{i j}=0(i j \in E)
$$

- Outer (linear inequality) description?
ideal: $I=\left\langle x_{i}^{2}-x_{i}(i \in V), x_{i} x_{j}(i j \in E)\right\rangle$.

$$
\begin{gathered}
\operatorname{STAB}(G)=\operatorname{conv}\left(V_{\mathbb{R}}(I)\right) \\
=\left\{x \in \mathbb{R}^{n}: f(x) \geq 0 \text { for all linear } f \geq 0 \text { on } V_{\mathbb{R}}(I)\right\}
\end{gathered}
$$

Theorem (Gouveia-Parrilo-Thomas 2011)

1. $L_{t}(G)=\left\{x \in \mathbb{R}^{n}: f(x) \geq 0\right.$ for all linear $\left.f \in \Sigma_{2 t}+I\right\}$.
2. G is perfect \Longleftrightarrow Any linear $f \geq 0$ on $V_{\mathbb{R}}(I)$ belongs to $\Sigma_{2}+I$.

Max-Cut: $\quad \max \sum_{i j \in E} w_{i j}\left(1-x_{i} x_{j}\right) / 2$ s.t. $x \in\{ \pm 1\}^{n}$.
Cut polytope: $\mathrm{CUT}_{n}=\operatorname{conv}\left(x x^{T}: x \in\{ \pm 1\}^{n}\right)$.

- The Lasserre relaxation of order 1 :

$$
L_{1}=\left\{X \in \mathcal{S}^{n}: X \succeq 0, X_{i i}=1(i \in V)\right\} .
$$

- This is the SDP used by [Goemans-Williamson 1995] for their celebrated 0.878 -approximation algorithm.
- This is the first (and only) improvement on the easy 0.5 -approximation algorithm.

■ Best possible under the unique games conjecture (if $\mathrm{P} \neq \mathrm{NP}$).

- L_{t} is defined by the conditions:

$$
y_{\emptyset}=1, M_{t}(y)=\left(y_{I \Delta J}\right)_{I, J \in \mathcal{P}_{t}(V)} \succeq 0 .
$$

- L_{2} satisfies the triangle inequalities: $x_{i j}+x_{i k}+x_{j k} \geq-1$.
- L_{t+1} satisfies the $(2 t+1)$-point inequalities:

$$
\sum_{1 \leq i<j \leq 2 t+1} x_{i j} \geq-t
$$

But L_{t} does not.

- Hence: the Lasserre rank of $\operatorname{CUT}\left(K_{n}\right)$ is at least $\lceil n / 2\rceil$.

Open: Does equality hold?
[Yes for $n \leq 7$]

Theorem (Fiorini-Massar-Pokutta-de Wolf 2011)

The smallest size of a linear lift of CUT_{n} is $2^{\Omega(n)}$.
Open: What about PSD lifts?

Another hierarchy: via copositive programming

Theorem (de Klerk-Pasechnik 2002)
$\alpha(G)=\min \lambda$ s.t. $\lambda\left(I+A_{G}\right)-J \in \mathcal{C}_{n}$.

Definition

\mathcal{C}_{n} : cone of copositive matrices M, i.e., $x^{\top} M x \geq 0$ for all $x \geq 0$.

Idea [Parrilo 2000]: Replace \mathcal{C}_{n} by the subcones:

$$
\mathcal{K}_{n}^{(t)}=\left\{M \in \mathcal{S}_{n} \mid\left(\sum_{i, j=1}^{n} M_{i j} x_{i}^{2} x_{j}^{2}\right)\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{t} \text { is SOS }\right\}
$$

Theorem (Pólya)

If M is strictly copositive, then $\left(x^{\top} M x\right)\left(\sum_{i=1}^{n} x_{i}\right)^{r}$ has non-negative coefficients, and thus $M \in \bigcup_{t \geq 0} \mathcal{K}_{n}^{(t)}$.

SDP bound: $\vartheta^{(t)}(G)=\min \lambda$ s.t. $\lambda\left(I+A_{G}\right)-J \in \mathcal{K}_{n}^{(t)}$.

- The Lasserre hierarchy refines the copositive hierarchy:

$$
\max \text { over } L_{t+1}(G) \leq \vartheta^{(t)}(G)
$$

■ The Lasserre hierarchy converges in $\alpha(G)$ steps.

Conjecture (de Klerk-Pasechnik 2002)

The copositive hierarchy converges in $\alpha(G)-1$ steps:

$$
\left(\alpha(G)\left(\sum_{i} x_{i}^{4}+2 \sum_{i j \in E} x_{i}^{2} x_{j}^{2}\right)-\left(\sum_{i} x_{i}^{2}\right)^{2}\right)\left(\sum_{i} x_{i}^{2}\right)^{\alpha(G)-1} \in \Sigma
$$

Theorem (Gvozdenovic-La 2007)
Yes: For graphs with $\alpha(G) \leq 8$.

