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Typical combinatorial optimization problem:

max ¢’ x st. Ax < b, x € {0,1}"

LP relaxation:
P:={xeR"| Ax < b}

Integral polytope to be found:
P :=conv(PN{0,1}")
Goal: Procedure to construct a tighter, tractable relaxation P’

such that
PICP CP

leading to P, after finitely many iterations.



Cutting planes

Gomory-Chvatal closure of P = {x € R": Ax < b}:

P'={x| uTAx < |u"b] Vu >0 with u” Ainteger}.

P’ is a polyhedron.

Py is found after finitely many iterations. [Chvatal 1973]

O(n?log n) iterations suffice if P C [0, 1]".
[Eisenbrand-Schulz 1999]

But optimization over P’ is hard! [Eisenbrand 1999]



This talk: Lift-and-project methods

We present several techniques to construct a hierarchy of
LP/SDP relaxations:

POPD...02P,=P.

~~ Balas-Ceria-Cornuéjols hierarchy [1993] LP
~~ Lovész-Schrijver N / N operators [1991] LP / SDP
~~ Sherali-Adams hierarchy [1990] LP
~~ Lasserre hierarchy [2001] SDP

Common feature:
One can optimize in polynomial time over P; for any fixed t.

Comparison:
SA C LS C BCC

Las € SA N LS,



Great interest recently in such hierarchies:
m Polyhedral combinatorics: How many rounds are needed to

find P;? Which valid inequalities are satisfied after t rounds?
New tractable instances?

m Proof systems: Use hierarchies as a model to generate
inequalities and show e.g. P; = {).

m Complexity theory: What is the integrality gap after t
rounds? Can one use the hierarchy to get improved tractable
approximations? Link to hardness of the problem?

Common background for the hierarchies: Moment theory and
sums of squares of polynomials.



Plan of the lecture

m Balas-Ceria-Cornuéjols, Lov$z-Schrijver, Sherali-Adams
constructions.

Full lifting and moment matrices

Lasserre hierarchy

Application to matchings, stable sets, knapsack, max-cut

Copositive hierarchy



P={xeR": Ax < b}

Homogenize P to the cone:

P ={(x0,x) € R bxg — Ax > 0}
:{yeR”“: g'y>0 (t=1,---,m)}
writing Ax < b as aZ—XSbg (t=1,---,m)

and setting gy = < be )
—ay



Lift-and-project strategy

1. Generate new constraints: Multiply the system Ax < b by
products of the constraints x; > 0 and 1 — x; > 0.

~> Polynomial system in x.

2. Linearize (and lift) by introducing new variables y; for

products [ [, i and setting x? = x;.

~~ Linear system in (x,y).

3. Project back on the x-variable space.

~+ LP relaxation P’ satisfying

P C P CP.

The methods vary in the choice of the multipliers and of iterating.



The Balas-Ceria-Cornuéjols construction

1. Multiply the system Ax < b by x; and 1 — xy:
xi(b—Ax) >0, (1—x1)(b—Ax) >0
2. Linearize: Set y; = xyx;, identify y; = x; and get the lift:
My = {(x,y): y1 =x1, bxa—Ay >0, b(1—x1)—A(x—y) > 0}
3. Project M; back to the x-subspace and get P; such that
P C P CP.
4. lterate: use variable x, starting from P; and get Pi», etc.

Lemma

P1 = conv(PN{x:x3 =0,1}).

Pf: “C": Write x € P; as x = Xlxl1 +(1- xl)f:)fl.

D" xePN{x:x =01} = (x,x1x) € M\j = x € P1.

Corollary

Find P, after n steps.



The Lovasz-Schrijver construction: N-operator

1. Multiply Ax < b by x;, 1 — x; Vi € [n] and get the system:

-
(b — a[x)x,- = ggT (i)(}() e >0 V¢,

(be— al )(1—xi) = & (1><1)T(e0 —e) >0 VL.

x J\ x
1\/1Y
2. Linearize: The new matrix variable Y = <x><x) belongs to

M(P) = {Y € Sn+1 | Yoi = Yii, Yei, Y(EQ—e,') S :5 Vi e [n]},

3. Project:

N(P) = {x ER"| Y € M(P) si. C) _ Yeo}



The Lovasz-Schrijver construction: N, -operator

1. Multiply Ax < b by x;, 1 — x; Vi € [n] and get the system:

-
(be — ang)x,- = gZT<1><1> e >0 VY,

X X

X X

(be— al )1 = xi) = & <1)<1>T(e0 — &) >0 VL.

T
2. Linearize: The new matrix variable Y = (i)(i) belongs to

M(P) ={Y € Spi1| Yoi = Yii, Ye;, Y(eo—e;) € P Vi € [n]},
M (P)=M(P)N S:+1'

3. Project:

N, (P) = {x €R"[3Y € M, (P) st. <i> — Yeo}



Properties of the N- and N, -operators

0. lterate: N¢(P) = N(NtX(P)), Nt (P) = N (NLL(P)).
1. P, C Ny (P)C N(P) C P.

2. N(P) C (conv(PN{x|x=0,1}).
i€[n]

3. N"(P) = P,.

4. If one can optimize in polynomial time over P, then the same
holds for N*(P) and for Ni (P) for any fixed t¢.

Example

For the ¢1-ball centered at e/2:
P={xeRY|Ticix+Tievyt—x) 2} VIc v},
Py =0, but 1e € NT71(P).

Hence, n iterations of the N, operator are needed to find P;.



Application to stable sets

P =

FR(G) ={x e RY | x;+x <1 (ij € E)}

P; = STAB(G): stable set polytope of G = (V, E).

1.

2.

Y € M(FR(G)) = y;j =0 for all edges jj € E.
The clique inequality: >, x <1 isvalid for N\ (FR(G)),
but its N-rank is |Q] — 2. ~> SDP helps!

e o _|cl-1
The odd circuit inequalities: Ziev(c) X < e

are valid for N(FR(G)) and they determine it exactly.

ﬁ—ZgN—rankgn—a(G)—l.

Ny-rank < a(G) [tight for G = line graph of Kapi1]



The Sherali-Adams construction

1. New polynomial constraints:
o x!(1=x)M\(b— Ax) >0 for | € W with |W| = t.
o x'(1-x)V' >0 for | C U with |U] =t + 1.

2. Linearize & lift: Introduce new variables y; for all
Ue pt+1(V), setting y; = x; (X,2 = X,').

3. Project back on x-variables space and get SA;(P).

Lemma

m SA;(P) = N(P).

= SA(P) C Nt(P).



Full lifting
x €{0,1}" ~ y*= (H X,-) € {0, 1}7D(V)
ICV

iel C
yX = (17X1a <oy Xns X1X2, «o5 Xn—1Xn, -+, H Xi)

iev
v =y = (T 1y

iel  jed | JCV

|
If x € PN{0,1}" then Y = y*(y*)T satisfies:

L Y(®0)=1.

2. Y(Il,J) depends only on | U J ~» moment matrix
3. Y>=0.

4. gi(x)Y =0 ~> localizing moment matrix

These conditions characterize conv(y* : x € PN {0,1}"), thus P;.



Full lifting via moment matrices

Given y € RP(V) define:
1. The moment matrix My (y) = (yius)1 sep(v)-
2. The shifted vector g+ y = (y; + >_; 8iViu{i})1ep(v)-
linearize g(x)y* = (g(x)x')]
3. The localizing moment matrix My/(g * y).

1. conv(y*(y*)T : x € PN {0,1}) is equal to

Ap={y e RPM 1y =1, My(y) = 0, My(ge*y) =0 Ve}.

2. Py is the projection of Ap.

3. Ap is a polytope.



Let Z be the matrix with columns y* for x € {0,1}".

Recall:

Ap={y e RPM 1 yy =1, My(y) =0, My(g +y) = 0Ve}.

Lemma

Ap ={yeRPM =1, 71y >0, (Z7ly),=0 if x) ¢P}

= conv(y*: x € PN {0,1}").

Proof:
1. Z diagonalizes My(y): My(y) = Z diag(Z 'y) ZT.
Thus: My(y) =0 < Z 1y >o0.

2. My(gr+y) =0 <= (Z7ty), g(x’) >0 for all J.



Case n =2

|
Z is the 0/1 matrix indexed by P(V') with

Z(, N =1, Z7Y1,J)= (D)W if1 C J, 0 otherwise.

g 1 2 12 g 1 2 12
0 1 1 1 1 1] 1 -1 -1 1
~1{0 10 1 4 1]o0o 1 0 -1
=510 0 1 1 > Z27=510 0 1 -1
12\0 0 0 1 12\0 O 0 1
Yo Y1 Y2 Y12 Yo—Y1—Yy2+yi2>0
Y 1 yi2 yi2 y1i—Yy12 >0
M = 0 <
v() Y2 Y12 Y2 Yi2 | y2—Yy122>0

Y12 Y12 Y12 Y12 yi2 >0



Yo yioY2 Y2 Yo—Y1—y2+y12>0
— >0
My(y) = yrooyi yr2 yi2 =0 yi—yi2 =
Y2 yi2 Y2 yi2 y2—y12=>0
Yi2 Y12 Y12 Y12 y12 >0
Consider

p—{bave) g0 =3 —x - 20},

3 3 1
(E*y)o=0—yi—y2 (g*yi =y —yi—y2 =y —yi,
1 3 1
(g *)/)2 = 5)’2 — Y12, (g * Y)lz = 5}/12 — Y12 — Y12 = _§y12'

(8 )0~ (&1 — (g *¥)a+ (8 ¥)2 = 20— 1~ o).

My (y),My(g*y) =0 <= y12=0, y1.y2 >0, yy —y1 — y» > 0.



Recipe for SDP hierarchies

Get SDP hierarchies by truncating M\ (y) and My (gy * y):
e Consider My(y) = (yius)1,scu, indexed by P(U) for U C V,
e or M:(y) = (yius)y,js<t indexed by P;(V) for some t < n.

1. (local) Sherali-Adams relaxation SA;(P):
Mu(y) = 0, Mw(gexy) =0 YU € Peya(V), W € Pe(V).
~ LP with variables y; for all | € Pry1(V)

2. (global) Lasserre relaxation L;(P):
M(y) = 0, Mi—1(ge *y) = 0.
~~ SDP with variables y; for all I € Py:(V)

Clearly:
L(P) C SA;1(P).



Comparison

m The Lasserre hierarchy refines all other hierarchies:

L:(P) C NIY(P) N SA._1(P).

m L;(P) is tighter, but more expensive to compute:
e SDP for L;(P) involves one matrix of size O(n").

o SDP for Nfr_l(P) involves O(nt~2) matrices of size n + 1.

m The N, N operators apply to P convex.

SA and Lasserre apply to P basic closed semi-algebraic.



Application to the knapsack problem

Given a,b,c > 0:

OPT =max ¢'x st. a'x<b, xe{0,1}"

LP =max ¢'x st. a'x<b, xel0,1]".

LP
— <2
OPT —

Theorem (Karlin-Mathieu-Thach Nguyen 2011)

. . max over SA 2
1. For the Sherali-Adams relaxation: oPT 2 Tit/n"
2. For the Lasserre relaxation: %".ﬁr“ <1+ 4.

The Lasserre hierarchy is more powerful than Sherali-Adams.



Application to the matching polytope

G =(V,E).
P={xeRE|x(5(v))<1VveV}

P;: matching polytope of G, whose linear inequality description
needs exponentially many inequalities.

Open question: Exist a linear or sdp lift of polynomial size?

For G = Kopt1:
m BCC-rank = n? [Aguilera et al. 2004]
m N-rank € [2n, n?] [LS 1991] [Goemans-Tungel 2001]
m Ni-rank = n [Stephen-Tungel 1999]
m SA-rank =2n—1 [Mathieu-Sinclair 2009]

Lasserre rank € [| 5], n] [Yu Hin-Tungel 2011]



Application to stable sets

m For t > 2, L;(FR(G)) is obtained (by projection) from the
conditions:

yo=1, Mi(y) =0, y; =0 (ij € E).

m STAB(G) is found after t = a(G) iterations.

m This is a natural generalization of the theta body TH(G)
obtained (by projection) from the conditions:

yo=1, Mi(y) =0, y; =0 (ij € E).

m The theta number [Lovédsz 1979]:

IG) = max ;.



Why is 9(G) important?

Links structural properties of graphs & geometry of polyhedra.

|
QFR(G) = {x e RY : > coxi <1 Vcliques QC V}.

STAB(G) C TH(G) C QFR(G).

Theorem (Chvatal 75, Grotschel-Lovasz-Schrijver 81, CRST 02)

G is perfect: G does not contain an induced odd circuit on at
least five nodes or its complement <= TH(G) = STAB(G)
< TH(G) = QFR(G).

For G perfect:

a(G) = ¥(G) can be computed in polynomial time.
STAB(G) needs exponentially many linear inequalities.
STAB(G) has a psd lift of size n+ 1.

STAB(G) has a linear lift of size n°(°&") " [Yannakakis 1991]
Open: Exist linear lift of polynomial size?



Why is 9Y(G) useful ?

¥(G) gives useful bounds that can be computed.

m Coding theory: Maximum size of error correcting codes ?
~» Wanted: a(G) for Hamming graphs on {0,1}".
~> ¥(G) is the Delsarte bound.
~> Lasserre relaxation of order 2 give best known bounds.

[Schrijver, Gijswijt, L., etc.]

m Geometric packing problems (kissing number, coloring):

~» Work with infinite graphs on the Euclidean space or the
unit sphere.

[Bachoc, Vallentin, Oliveira, etc.]



On the dual side: Sums of squares representations

e The inner (point) description of the Lasserre relaxation L:(G):

yp=1, M(y) =0, y; =0 (ij € E).

e Quter (linear inequality) description?
ideal: | = (x? —x; (i € V), xix; (ij € E)).
STAB(G) = conv(V&(/))

={xeR":f(x) >0 forall linear f >0 on Vr(/)}.

Theorem (Gouveia-Parrilo-Thomas 2011)

1. Li(G)={x€R":f(x) >0 foralllinear f € ¥, + /}.
2. G is perfect <= Any linear f > 0 on V() belongs to > + I.



Application to Max-Cut

Max-Cut: max Z wii(1 — xix;)/2 st x € {£1}".
ijeE

Cut polytope: CUT, = conv(xx” : x € {£1}").
m The Lasserre relaxation of order 1:

le{XeS”:Xto, X,','Zl(iE \/)}

m This is the SDP used by [Goemans-Williamson 1995] for their
celebrated 0.878-approximation algorithm.

m This is the first (and only) improvement on the easy
0.5-approximation algorithm.

m Best possible under the unique games conjecture (if P#NP).



Higher order relaxations

m L, is defined by the conditions:
o =1, M(y) = (Vins)1sep,(v) = 0.

m [, satisfies the triangle inequalities: x;; + xj + xj > —1.

m Ly satisfies the (2t + 1)-point inequalities: [La 2001]
Z Xjj = —t.
1<i<j<2t+1
But L; does not. [La 2003]

m Hence: the Lasserre rank of CUT(K,) is at least [n/2].

Open: Does equality hold? [Yes for n <7]

Theorem (Fiorini-Massar-Pokutta-de Wolf 2011)

The smallest size of a linear lift of CUT,, is 28(n)

Open: What about PSD lifts?



Another hierarchy: via copositive programming

Theorem (de Klerk-Pasechnik 2002)
a(G) =min X s.t. NI +Ag) —J €C,.

C,: cone of copositive matrices M, i.e., x” Mx > 0 for all x > 0.

Idea [Parrilo 2000]: Replace C,, by the subcones:

n

KO =dmes,| (Z M,-,-x,?xj?) (Zx,?)t is SOS b |

ij=1 i=1

Theorem (Pdlya)

If M is strictly copositive, then (xT Mx)(>_"_, x;)" has

non-negative coefficients, and thus M € Ut>0 ICg,t).



SDP bound: 7()(G) = min A st. A(/ + Ag) — J € K.
m The Lasserre hierarchy refines the copositive hierarchy:
max over Li11(G) < 9(G).
m The Lasserre hierarchy converges in a(G) steps.

Conjecture (de Klerk-Pasechnik 2002)

The copositive hierarchy converges in a(G) — 1 steps:

a(G)-1
a(G) Zxﬁ+22x,-2xj2 —(Zx,-z)2 <Zx,2> €exr.

ijeE

Theorem (Gvozdenovic-La 2007)
Yes: For graphs with o(G) < 8.




