
Introducing GloptiPoly for linear programming

on the cone of nonnegative measures

Didier HENRION

LAAS-CNRS, Univ. Toulouse, France

Czech Tech. Univ. Prague, Czech Rep.

MAP Konstanz

September 2012



LP for measures

Linear programming (LP) problem

min 〈c, µ〉
s.t. A(µ) = b

µ ≥ 0

where µ = (µi) is a vector of nonnegative Borel measures and

〈c, µ〉 =
∑
i

〈ci, µi〉 =
∑
i

∫
cidµi

and

A(µ) = b⇐⇒ 〈aj, µ〉 =
∑
i

∫
aijdµi = bj



From J. B. Lasserre’s talk

Nonconvex polynomial optimization problem

min
x∈X

g0(x)

on basic semialgebraic set

X = {x ∈ Rn : gk(x) ≥ 0, k = 1,2, . . .}

formulated as a convex linear measure problem

min 〈g0, µ〉
s.t. 〈1, µ〉 = 1

where the unknown is a nonnegative measure µ on X



Generalized problem of moments

Several measures µi supported on semialgebraic sets Xi

All the data are polynomials, so we can replace measures by their

moments (e.g.
∫
Xi
ci(x)dµi =

∫
Xi

∑
α ciαx

αdµi =
∑
α ciα

∫
Xi
xαdµi)

minµ
∑
i
∫
Xi
cidµi

s.t.
∑
i
∫
Xi
aijdµi = bj

measures µi

miny
∑
i
∑
α ciαyiα

s.t.
∑
i
∑
α aijαyiα = bj

moments yi

provided we can handle the representation condition

yiα =
∫
Xi
xαdµi(x)



Moment LP as LMI

Using Putinar’s representation conditions we obtain

miny cTy
s.t. Ay = b

yα =
∫
X x

αdµ
X = {x : gk(x) ≥ 0, ∀k}

infinite-dimensional

LP problem

miny cTy
s.t. Ay = b

Md(y) � 0
Md(gky) � 0, ∀k

finite-dim. LMI

relaxation of order d

producing (under some assumption) a converging

hierarchy of finite-dimensional LMI relaxations

Discretization, analogy with Fourier analysis



What is GloptiPoly ?

Matlab parser for generalized problems of moments:

1. Generates SDP relaxation of given order
in SeDuMi format (A, b, c,K)

minx cTx maxy bTy

s.t. Ax = b s.t. z = c−ATy
x ∈ K z ∈ K

2. Call an SDP solver:
• either SeDuMi (default)
• or any solver interfaced with YALMIP

3. (Try to) extract solutions from moment matrices
(numerical linear algebra over quotient ideal)



Matlab classes

Multivariate polynomials mpol

Linear combinations of monomials depending on
variables declared in the Matlab working space

>> mpol x

>> x

Scalar polynomial

x

>> mpol y 2

>> y

2-by-1 polynomial vector

(1,1):y(1)

(2,1):y(2)

>> mpol z 3 2

>> z

3-by-2 polynomial matrix

(1,1):z(1,1)

(2,1):z(2,1)

(3,1):z(3,1)

(1,2):z(1,2)

(2,2):z(2,2)

(3,2):z(3,2)



Matlab classes

All standard Matlab operators overloaded for class mpol

>> y*y’-z’*z+x^3

2-by-2 polynomial matrix

(1,1):y(1)^2-z(1,1)^2-z(2,1)^2-z(3,1)^2+x^3

(2,1):y(1)y(2)-z(1,1)z(1,2)-z(2,1)z(2,2)-z(3,1)z(3,2)+x^3

(1,2):y(1)y(2)-z(1,1)z(1,2)-z(2,1)z(2,2)-z(3,1)z(3,2)+x^3

(2,2):y(2)^2-z(1,2)^2-z(2,2)^2-z(3,2)^2+x^3



Matlab classes

Measures meas

• variables associated with real-valued measures
• one variable associated with only one measure
• measures handled internally as labels

>> mpol x
>> mpol y 2
>> meas
Measure 1 on 3 variables: x,y(1),y(2)
>> meas(y) % create new measure
Measure 2 on 2 variables: y(1),y(2)

>> m = meas
1-by-2 vector of measures
1:Measure 1 on 1 variable: x
2:Measure 2 on 2 variables: y(1),y(2)
>> m(1)
Measure number 1 on 1 variable: x

The above script creates a measure dµ1(x) on R
and a measure dµ2(y) on R2



Matlab classes

Moments mom

Linear combinations of moments of a measure

>> mom(1+2*x+3*x^2)

Scalar moment

I[1+2x+3x^2]d[1]

>> mom(y*y’)

2-by-2 moment matrix

(1,1):I[y(1)^2]d[2]

(2,1):I[y(1)y(2)]d[2]

(1,2):I[y(1)y(2)]d[2]

(2,2):I[y(2)^2]d[2]

The notation I[p]d[k] stands for
∫
p dµk

where p is a polynomial of the variables associated
with measure dµk, and k is the measure label



Matlab classes

It makes no sense to define moments over several measures

or nonlinear moment expressions:

>> mom(x*y(1))

??? Error using ==> mom.mom

Invalid partitioning of measures in moments

>> mom(x)*mom(y(1))

??? Error using ==> mom.times

Invalid moment product



Matlab classes

Note also the distinction between a constant term

and the mass of a measure:

>> 1+mom(x)

Scalar moment

1+I[x]d[1]

>> mom(1+x)

Scalar moment

I[1+x]d[1]

>> mass(x)

Scalar moment

I[1]d[1]

>> mass(meas(y))

Scalar moment

I[1]d[2]

>> mass(y)

Scalar moment

I[1]d[2]

>> mass(2)

Scalar moment

I[1]d[2]



Matlab classes

Support constraints supcon

By default, a measure on n variables is defined on the whole Rn

We can restrict the support of a mesure to a given semialgebraic
set as follows:

>> 2*x^2+x^3 == 2+x

Scalar measure support equality

2x^2+x^3 == 2+x

>> disk = (y’*y <= 1)

Scalar measure support inequality

y(1)^2+y(2)^2 <= 1



Matlab classes

Moment constraints momcon

We can constrain linearly the moments of several measures:

>> mom(x^2+2) == 1+mom(y(1)^3*y(2))

Scalar moment equality constraint

I[2+x^2]d[1] == 1+I[y(1)^3y(2)]d[2]

>> mass(x)+mass(y) <= 2

Scalar moment inequality constraint

I[1]d[1]+I[1]d[2] <= 2



Matlab classes

An objective function to be minimized or

maximized is also of class moncon:

>> min(mom(x^2+2))

Scalar moment objective function

min I[2+x^2]d[1]

>> max(x^2+2)

Scalar moment objective function

max I[2+x^2]d[1]

The latter syntax is a handy short-cut which directly converts an

mpol object into an momcon object



Discrete measures

Variables in a measure can be assigned numerical values:

>> m1 = assign(x,2)

Measure 1 on 1 variable: x

supported on 1 point

which is equivalent to enforcing a discrete support

for the measure

Here dµ1 is set to the Dirac at the point 2



Convertors

The double operator converts a measure or its variables
into a floating point number:

>> double(x)

ans =

2

>> double(m1)

ans =

2

Polynomials can be evaluated similarly:

>>double(1-2*x+3*x^2)

ans =

9



Convertors

Discrete measure supports consisting of several points

can be specified in an array:

>> m2 = assign(y,[-1 2 0;1/3 1/4 -2])

Measure 2 on 2 variables: y(1),y(2)

supported on 3 points

>> double(m2)

ans(:,:,1) = ans(:,:,2) = ans(:,:,3) =

-1.0000 2.0000 0

0.3333 0.2500 -2



Moment SDP problem

Moment SDP problem msdp

Declared by calling constructor msdp

with arguments of classes supcon and momcon

built from mpol and mom objects

The moment SDP problem can then be solved with function msol

Here are some typical examples..



Unconstrained minimization

Given a multivariate polynomial g0(x)

the unconstrained optimization problem

min
x∈Rn

g0(x)

can be formulated as a moment LP problem

minµ

∫
g0(x)dµ(x)

s.t.
∫
dµ(x) = 1



Unconstrained minimization

Minimizing the two-dimensional six-hump camel back function
(six local minima including two global minima)

>> mset clear

>> mpol x1 x2

>> g0 = 4*x1^2+x1*x2-4*x2^2-2.1*x1^4+4*x2^4+x1^6/3

Scalar polynomial

4x1^2+x1x2-4x2^2-2.1x1^4+4x2^4+0.33333x1^6

>> P = msdp(min(g0));

GloptiPoly 3.6

Define moment SDP problem

...

(GloptiPoly output suppressed)

...

Generate moment SDP problem



Unconstrained minimization

>> P = msdp(min(g0))

Moment SDP problem

Measure label = 1

Relaxation order = 3

Decision variables = 27

Semidefinite inequalities = 10x10

>> msol(P)

...

2 globally optimal solutions extracted

Global optimality certified numerically

This indicates that the global minimum is attained

with a discrete measure supported on two points



Unconstrained minimization

The measure can be constructed from the knowledge of

its first moments of degree up to 6:

>> meas

Measure 1 on 2 variables: x1,x2

with moments of degree up to 6, supported on 2 points

>> double(meas)

ans(:,:,1) = >> double(g0)

0.0898 ans(:,:,1) =

-0.7127 -1.0316

ans(:,:,2) = ans(:,:,2) =

-0.0898 -1.0316

0.7127



Constrained minimization

Polynomial optimization problem

min
x∈X

g0(x)

with

X = {x ∈ Rn : gk(x) ≥ 0, k = 1,2, . . .}

basic semialgebraic

This (nonconvex polynomial) problem can be formulated as the
(convex linear) moment problem

minµ
∫
X g0(x)dµ(x)

s.t.
∫
X dµ(x) = 1

where the indeterminate is a probability measure µ

supported on set X



Constrained minimization

GloptiPoly input sequence

>> mpol x 3
>> g0 = -2*x(1)+x(2)-x(3);
>> X = [24-20*x(1)+9*x(2)-13*x(3)+4*x(1)^2-4*x(1)*x(2) ...
+4*x(1)*x(3)+2*x(2)^2-2*x(2)*x(3)+2*x(3)^2 >= 0, ...
x(1)+x(2)+x(3) <= 4, 3*x(2)+x(3) <= 6, ...
0 <= x(1), x(1) <= 2, 0 <= x(2), 0 <= x(3), x(3) <= 3];

>> P = msdp(min(g0), X)
...
Moment SDP problem

Measure label = 1
Relaxation order = 1
Decision variables = 9
Linear inequalities = 8
Semidefinite inequalities = 4x4



Constrained minimization

>> [status,obj] = msol(P)

GloptiPoly 3.6

Solve moment SDP problem

...

Global optimality cannot be ensured

status =

0

obj =

-6.0000

Since status = 0 the moment SDP problem can be solved
but it is impossible to detect global optimality

The value obj = -6.0000 is then a lower bound
on the global minimum of the quadratic problem



Constrained minimization

Higher order SDP relaxations with increasing

number of variables and constraints

>> P = msdp(min(g0), X, 2)
...
Moment SDP problem

Measure label = 1
Relaxation order = 2
Decision variables = 34
Semidefinite inequalities = 10x10+8x(4x4)

>> [status,obj] = msol(P)
...
Global optimality cannot be ensured
status =

0
obj =

-5.6922



Constrained minimization

Third relaxation..

>> P = msdp(min(g0), X, 3)
...
Moment SDP problem

Measure label = 1
Relaxation order = 3
Decision variables = 83
Semidefinite inequalities = 20x20+8x(10x10)

>> [status,obj] = msol(P)
...
Global optimality cannot be ensured
status =

0
obj =

-4.0684



Constrained minimization

Mononotically increasing sequence of lower bounds

Global optimum reached numerically at relaxation 4:

>> P = msdp(min(g0), X, 4)
...
Moment SDP problem

Measure label = 1
Relaxation order = 4
Decision variables = 164
Semidefinite inequalities = 35x35+8x(20x20)

>> [status,obj] = msol(P)
...
2 globally optimal solutions extracted
Global optimality certified numerically
status =

1
obj =

-4.0000

>> double(x)
ans(:,:,1) =

2.0000
0.0000
0.0000

ans(:,:,2) =
0.5000
0.0000
3.0000

>> double(g0)
ans(:,:,1) =

-4.0000
ans(:,:,2) =

-4.0000



homepages.laas.fr/henrion/software/gloptipoly


