Introducing GloptiPoly for linear programming on the cone of nonnegative measures

Didier HENRION

LAAS-CNRS, Univ. Toulouse, France Czech Tech. Univ. Prague, Czech Rep.

MAP Konstanz

September 2012

LP for measures

Linear programming (LP) problem

$$
\begin{array}{ll}
\min & \langle c, \mu\rangle \\
\mathrm{s.t.} & A(\mu)=b \\
& \mu \geq 0
\end{array}
$$

where $\mu=\left(\mu_{i}\right)$ is a vector of nonnegative Borel measures and

$$
\langle c, \mu\rangle=\sum_{i}\left\langle c_{i}, \mu_{i}\right\rangle=\sum_{i} \int c_{i} d \mu_{i}
$$

and

$$
A(\mu)=b \Longleftrightarrow\left\langle a_{j}, \mu\right\rangle=\sum_{i} \int a_{i j} d \mu_{i}=b_{j}
$$

```
From J. B. Lasserre's talk
```

Nonconvex polynomial optimization problem

$$
\min _{x \in X} g_{0}(x)
$$

on basic semialgebraic set

$$
X=\left\{x \in \mathbb{R}^{n}: g_{k}(x) \geq 0, k=1,2, \ldots\right\}
$$

formulated as a convex linear measure problem

$$
\begin{aligned}
\min & \left\langle g_{0}, \mu\right\rangle \\
\mathrm{s.t.} & \langle 1, \mu\rangle=1
\end{aligned}
$$

where the unknown is a nonnegative measure μ on X

Generalized problem of moments

Several measures μ_{i} supported on semialgebraic sets X_{i}

All the data are polynomials, so we can replace measures by their moments (e.g. $\int_{X_{i}} c_{i}(x) d \mu_{i}=\int_{X_{i}} \sum_{\alpha} c_{i \alpha} x^{\alpha} d \mu_{i}=\sum_{\alpha} c_{i \alpha} \int_{X_{i}} x^{\alpha} d \mu_{i}$)

$$
\begin{array}{llll}
\min _{\mu} & \sum_{i} \int_{X_{i}} c_{i} d \mu_{i} & \min _{y} & \sum_{i} \sum_{\alpha} c_{i \alpha} y_{i \alpha} \\
\text { s.t. } & \sum_{i} \int_{X_{i}} a_{i j} d \mu_{i}=b_{j} & \text { s.t. } & \sum_{i} \sum_{\alpha} a_{i j_{\alpha}} y_{i \alpha}=b_{j} \\
\quad \text { measures } \mu_{i} & & \text { moments } y_{i}
\end{array}
$$

provided we can handle the representation condition

$$
y_{i \alpha}=\int_{X_{i}} x^{\alpha} d \mu_{i}(x)
$$

Moment LP as LMI

Using Putinar's representation conditions we obtain
$\min _{y} c^{T} y$
s.t. $\quad A y=b$
$y_{\alpha}=\int_{X} x^{\alpha} d \mu$
$X=\left\{x: g_{k}(x) \geq 0, \forall k\right\}$
infinite-dimensional
LP problem

$$
\begin{array}{ll}
\min _{y} & c^{T} y \\
\mathrm{s.t.} & A y=b \\
& M_{d}(y) \succeq 0 \\
& M_{d}\left(g_{k} y\right) \succeq 0, \forall k
\end{array}
$$

finite-dim. LMI
relaxation of order d
producing (under some assumption) a converging hierarchy of finite-dimensional LMI relaxations

Discretization, analogy with Fourier analysis

What is GloptiPoly ?

Matlab parser for generalized problems of moments:

1. Generates SDP relaxation of given order
in SeDuMi format (A, b, c, K)

$$
\begin{array}{llll}
\min _{x} & c^{T} x & \max _{y} & b^{T} y \\
\text { s.t. } & A x=b & \text { s.t. } & z=c-A^{T} y \\
& x \in K & & z \in K
\end{array}
$$

2. Call an SDP solver:

- either SeDuMi (default)
- or any solver interfaced with YALMIP

3. (Try to) extract solutions from moment matrices (numerical linear algebra over quotient ideal)

Matlab classes

Multivariate polynomials mpol
Linear combinations of monomials depending on variables declared in the Matlab working space

```
>> mpol x
>> x
Scalar polynomial
x
>> mpol y 2
>> y
2-by-1 polynomial vector
(1,1):y(1)
(2,1):y(2)
```

```
>> mpol z 3 2
(1,1):z(1,1)
(2,1):z(2,1)
(3,1):z(3,1)
(1,2):z(1,2)
(2,2):z(2,2)
>> z
3-by-2 polynomial matrix
(3,2):z(3,2)
```


Matlab classes

All standard Matlab operators overloaded for class mpol

```
>> y*y'-z'*z+x^3
2-by-2 polynomial matrix
(1,1):y(1)^2-z(1,1)^2-z(2,1)^2-z (3,1)^2+x^3
(2, 1):y(1)y(2)-z(1,1)z(1, 2)-z(2, 1)z(2, 2)-z (3,1)z(3, 2)+x^3
(1,2):y(1)y(2)-z(1,1)z(1,2)-z(2,1)z(2,2)-z(3,1)z(3, 2)+x^3
(2,2):y(2)^2-z(1,2)^2-z (2, 2)^2-z (3,2)^2+x^3
```


Matlab classes

Measures meas

- variables associated with real-valued measures
- one variable associated with only one measure
- measures handled internally as labels

```
>> mpol x
>> mpol y 2
>> meas
Measure 1 on 3 variables: x,y(1),y(2)
>> meas(y) % create new measure
Measure 2 on 2 variables: y(1),y(2)
```

```
>> m = meas
1-by-2 vector of measures
1:Measure 1 on 1 variable: x
2:Measure 2 on 2 variables: y(1),y(2)
>> m(1)
Measure number 1 on 1 variable: x
```

The above script creates a measure $d \mu_{1}(x)$ on \mathbb{R} and a measure $d \mu_{2}(y)$ on \mathbb{R}^{2}

Matlab classes

Moments mom

Linear combinations of moments of a measure

```
>> mom(1+2*x+3*x^2)
Scalar moment
I[1+2x+3x^2]d[1]
```

$$
\begin{aligned}
& \text { >> mom }(y * y ') \\
& 2-b y-2 \text { moment matrix } \\
& (1,1): I\left[y(1)^{\wedge} 2\right] d[2] \\
& (2,1): I[y(1) y(2)] d[2] \\
& (1,2): I[y(1) y(2)] d[2] \\
& (2,2): I[y(2) \wedge 2] d[2]
\end{aligned}
$$

The notation $\mathrm{I}[\mathrm{p}] \mathrm{d}[\mathrm{k}]$ stands for $\int p d \mu_{k}$ where p is a polynomial of the variables associated with measure $d \mu_{k}$, and k is the measure label

Matlab classes

It makes no sense to define moments over several measures or nonlinear moment expressions:
>> mom(x*y(1))
??? Error using ==> mom.mom
Invalid partitioning of measures in moments
>> mom(x)*mom(y (1))
??? Error using ==> mom.times
Invalid moment product

Matlab classes

Note also the distinction between a constant term and the mass of a measure:

>> 1+mom(x)
Scalar moment
1+I[x]d[1]
>> mom (1+x)
Scalar moment
I [1+x]d[1]
>> mass(x)
Scalar moment I[1]d[1]

>> mass (meas (y))
Scalar moment
I[1]d[2]
>> mass (y)
Scalar moment
I[1]d[2]
>> mass (2)
Scalar moment
I[1]d[2]

Matlab classes

Support constraints supcon

By default, a measure on n variables is defined on the whole \mathbb{R}^{n}

We can restrict the support of a mesure to a given semialgebraic set as follows:
>> $2 * x^{\wedge} 2+x^{\wedge} 3==2+x$
Scalar measure support equality $2 x^{\wedge} 2+x^{\wedge} 3==2+x$
>> disk $=\left(y^{\prime} * y<=1\right)$
Scalar measure support inequality
$y(1)^{\wedge} 2+y(2)^{\wedge} 2<=1$

Matlab classes

Moment constraints momcon

We can constrain linearly the moments of several measures:
$\gg \operatorname{mom}\left(x^{\wedge} 2+2\right)==1+m o m(y(1) \wedge 3 * y(2))$
Scalar moment equality constraint
$I\left[2+x^{\wedge} 2\right] d[1]==1+I[y(1) \wedge 3 y(2)] d[2]$
>> mass(x)+mass(y) <= 2
Scalar moment inequality constraint
I[1]d[1] $+\mathrm{I}[1] \mathrm{d}[2]<=2$

Matlab classes

An objective function to be minimized or maximized is also of class moncon:
>> $\min \left(\operatorname{mom}\left(x^{\wedge} 2+2\right)\right)$
Scalar moment objective function
$\min I\left[2+x^{\wedge} 2\right] d[1]$
>> $\max \left(x^{\wedge} 2+2\right)$
Scalar moment objective function
$\max I\left[2+x^{\wedge} 2\right] d[1]$

The latter syntax is a handy short-cut which directly converts an mpol object into an momcon object

Discrete measures

Variables in a measure can be assigned numerical values:
>> m1 = assign(x,2)
Measure 1 on 1 variable: x
supported on 1 point
which is equivalent to enforcing a discrete support for the measure

Here $d \mu_{1}$ is set to the Dirac at the point 2

Convertors

The double operator converts a measure or its variables into a floating point number:

```
>> double(x)
ans =
    2
>> double(m1)
ans =
    2
```

Polynomials can be evaluated similarly:

```
>>double(1-2*x+3*x^2)
ans =
    9
```


Convertors

Discrete measure supports consisting of several points can be specified in an array:

```
>> m2 = assign(y,[l-1 2 0;1/3 1/4 -2]}]
Measure 2 on 2 variables: y(1),y(2)
supported on 3 points
>> double(m2)
ans(:,:,1)=
```


Moment SDP problem

Moment SDP problem msdp

Declared by calling constructor msdp
with arguments of classes supcon and momcon built from mpol and mom objects

The moment SDP problem can then be solved with function msol

Here are some typical examples..

Unconstrained minimization

Given a multivariate polynomial $g_{0}(x)$ the unconstrained optimization problem

$$
\min _{x \in \mathbb{R}^{n}} g_{0}(x)
$$

can be formulated as a moment LP problem

$$
\begin{array}{ll}
\min _{\mu} & \int g_{0}(x) d \mu(x) \\
\text { s.t. } & \int d \mu(x)=1
\end{array}
$$

Unconstrained minimization

Minimizing the two-dimensional six-hump camel back function (six local minima including two global minima)
>> mset clear
>> mpol x1 x2
$\gg \mathrm{g} 0=4 * \mathrm{x} 1^{\wedge} 2+\mathrm{x} 1 * \mathrm{x} 2-4 * \mathrm{x} 2^{\wedge} 2-2.1 * \mathrm{x} 1^{\wedge} 4+4 * \mathrm{x} 2^{\wedge} 4+\mathrm{x} 1^{\wedge} 6 / 3$
Scalar polynomial
$4 \times 1^{\wedge} 2+\mathrm{x} 1 \times 2-4 \mathrm{x} 2^{\wedge} 2-2.1 \times 1^{\wedge} 4+4 \times 2 \wedge 4+0.33333 \mathrm{x} 1^{\wedge} 6$
>> $P=\operatorname{msdp}(\min (\mathrm{g} 0))$;
GloptiPoly 3.6
Define moment SDP problem
(GloptiPoly output suppressed)
Generate moment SDP problem

Unconstrained minimization

```
>> P = msdp(min(g0))
Moment SDP problem
    Measure label = 1
    Relaxation order = 3
    Decision variables = 27
    Semidefinite inequalities = 10x10
>> msol(P)
```

2 globally optimal solutions extracted
Global optimality certified numerically

This indicates that the global minimum is attained with a discrete measure supported on two points

Unconstrained minimization

The measure can be constructed from the knowledge of its first moments of degree up to 6:

```
>> meas
```

Measure 1 on 2 variables: $x 1, x 2$
with moments of degree up to 6 , supported on 2 points
>> double(meas)
ans(:,:,1) =
>> double(g0)
0.0898
-0.7127
ans(:,:,2) =
-0.0898

```
ans(:,:,1) =
    -1.0316
ans(:,:,2) =
    -1.0316
```


Constrained minimization

Polynomial optimization problem

$$
\min _{x \in X} g_{0}(x)
$$

with

$$
X=\left\{x \in \mathbb{R}^{n}: g_{k}(x) \geq 0, k=1,2, \ldots\right\}
$$

basic semialgebraic
This (nonconvex polynomial) problem can be formulated as the (convex linear) moment problem

$$
\begin{array}{ll}
\min _{\mu} & \int_{X} g_{0}(x) d \mu(x) \\
\mathrm{s.t.} & \int_{X} d \mu(x)=1
\end{array}
$$

where the indeterminate is a probability measure μ supported on set X

Constrained minimization

GloptiPoly input sequence

```
>> mpol x 3
>> g0 = -2*x(1)+x(2)-x(3);
>> X = [24-20*x(1)+9*x(2)-13*x(3)+4*x(1)^2-4*x(1)*x(2) ...
    +4*x(1)*x(3)+2*x(2)^2-2*x(2)*x(3)+2*x(3)^2 >= 0, ...
    x(1)+x(2)+x(3) <= 4, 3*x(2)+x(3) <= 6, ...
    0 <= x(1), x(1) <= 2, 0 <= x(2), 0 <= x(3), x(3) <= 3];
>> P = msdp(min(g0), X)
Moment SDP problem
    Measure label = 1
    Relaxation order = 1
    Decision variables = 9
    Linear inequalities = 8
    Semidefinite inequalities = 4x4
```


Constrained minimization

```
>> [status,obj] = msol(P)
GloptiPoly 3.6
Solve moment SDP problem
Global optimality cannot be ensured
status =
    0
obj =
    -6.0000
```

Since status $=0$ the moment SDP problem can be solved but it is impossible to detect global optimality

The value obj $=-6.0000$ is then a lower bound on the global minimum of the quadratic problem

Constrained minimization

Higher order SDP relaxations with increasing number of variables and constraints

```
>> P = msdp(min(g0), X, 2)
Moment SDP problem
    Measure label = 1
    Relaxation order = 2
    Decision variables = 34
    Semidefinite inequalities = 10x10+8x(4x4)
>> [status,obj] = msol(P)
Global optimality cannot be ensured
status =
    0
obj =
    -5.6922
```


Constrained minimization

```
Third relaxation..
>> P = msdp(min(g0), X, 3)
Moment SDP problem
    Measure label
    = 1
    Relaxation order
    = 3
    Decision variables = 83
    Semidefinite inequalities = 20x20+8x(10x10)
>> [status,obj] = msol(P)
Global optimality cannot be ensured
status =
    0
obj =
    -4.0684
```


Constrained minimization

Mononotically increasing sequence of lower bounds Global optimum reached numerically at relaxation 4:

```
>> P = msdp(min(g0), X, 4)
Moment SDP problem
    Measure label = 1
    Relaxation order = 4
    Decision variables = 164
    Semidefinite inequalities = 35x35+8x(20x20)
>> [status,obj] = msol(P)
2 globally optimal solutions extracted
Global optimality certified numerically
status =
    1
obj =
    -4.0000
```

```
>> double(x)
```

>> double(x)
ans(:,:,1) =
ans(:,:,1) =
2.0000
2.0000
0.0000
0.0000
0.0000
0.0000
ans(:,:,2) =
ans(:,:,2) =
0.5000
0.5000
0.0000
0.0000
3.0000
3.0000
>> double(g0)
>> double(g0)
ans(:,:,1) =
ans(:,:,1) =
-4.0000
-4.0000
ans(:,:,2) =
ans(:,:,2) =
-4.0000

```
    -4.0000
```

homepages.laas.fr/henrion/software/gloptipoly

